GEOLOGIC INVESTIGATIONS SERIES I–2769 U.S. DEPARTMENT OF THE INTERIOR Prepared for the LUNAR NEAR SIDE AND FAR SIDE HEMISPHERES U.S. GEOLOGICAL SURVEY NORTH NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NORTH SHEET 1 OF 3 90° 90° 80° . 80° 80° 80° Peary Hermite Nansen Byrd Rozhdestvenskiy 70° 70° Near Side Far Side 70° 70° Hemisphere Hemisphere Plaskett Pascal . Petermann . Poinsot . Cremona . Scoresby v Hayn SHEET 1 . Milankovic 60° Baillaud 60° 60° Schwarzschild . Mezentsev 60° . Seares Ricco Meton Bel'kovich . Philolaus Bel'kovich . Karpinskiy . Hippocrates Barrow MARE Roberts . Poczobutt Xenophanes Pythagoras HUMBOLDTIANUM . Kirkwood Arnold West East Gamow Volta Strabo Stebbins 50° . 50° Hemisphere Hemisphere 50° Compton 50° Sommerfeld Babbage J. Herschel W. Bond . Kane De La Avogadro . South Rue Emden . Coulomb Galvani SHEET 2 Olivier Tikhov Birkhoff Endymion . MARE FR . Störmer IG O . von Rowland Harpalus R Békésy . IS Sarton 40° IS 40° 40° . Chappell . Stefan 40° . Mercurius Carnot OR Lacus North South Fabry . Millikan Wegener . Plato Tempor Hemisphere Hemisphere D'Alembert . Paraskevopoulos Bragg Ju ra . Aristoteles is Atlas . Schlesinger SINUS R s Montes . Slipher Wood te Harkhebi n Vallis Alpes . Montgolfier o SHEET 3 SINUS Lacus Hercules Landau Nernst M H. G. Campbell Mons . Bridgman Alpes Gauss Wells Rümker . Mortis INDEX . Vestine IRIDUM Eudoxus Messala . Cantor Ley Lorentz Wiener Frost 30° 30° 30° Szilard . 30° LA . Von Neumann CUS SOMNIOR . Kurchatov Charlier Hahn Maxwell . Appleton . Gadomski MARE UM Laue la Joliot o Montes Caucasus . Bartels ric . Aristillus Seyfert . Kovalevskaya . Russell Ag IMBRIUM . Posidonius tes Shayn n . Larmor o Cleomedes Plutarch . Cockcroft . M Montes . Berkner O Mare Struve er A . Archimedes Taurus n . Trumpler Parenago C MARE g MARE Bell u Joule 20° Montes Palus i 20° 20° 20° E s . MOSCOVIENSE Fitzgerald . Robertson Harbing Montes Putredinis s A . Lambert u . Aristarchus n . Archimedes i . Vernadskiy Komarov . N n Freundlich n e . Al-Biruni . p SERENITATIS Olcott U A Montes Haemus . Morse . Jackson S MARE . Buys-Ballot Fersman . Krafft . Konstantinov . Weyl Vasco s Gavrilov Mach Poynting e MARE da Gama nt Fleming Mitra o CRISIUM Kamerlingh M MARGINIS Kekulé . Onnes P Hertz . McMath s M PALUS . R o Anderson a nu nte . Raimond ard s Ca . Eratosthenes 10° C O rpatus MARE SOMNI 10° 10° 10° a Guyot Spencer im . Marius . Kolhörster R C VAPORUM Jones . Ostwald . Sharonov E MARE Neper . Vetchinkin Elvey L C . Copernicus R Lobachevskiy a i Julius . Olbers L m . Papaleksi te n A MARE a Rima Ar Caesar Ibn a Hy . Michelson g Zhukovskiy . Lebedinskiy R INSULARUM in Firnas L us iada . e eus TRANQUILLITATIS Mendeleev u U . Taruntius . King Tsander s SINUS AESTUUM Babcock . Mandel'shtam Valier c h M . Schuster C n a e . r Reinhold te . Kibal'chich Hertzsprung n . Hevelius a E E T T 90 80 70 60 50 40 30 20 10 SIN0US MEDII 10 20 30 40 50 60 70 80 90 A 90 100 110 120 130 140 150 160 170 180 170 160 150 140 130 120 M 110 100 90 A S ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° S ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° S i S E 0° 0° E 0° c 0° T T Vening h W MARE MARE W . Vavilov e l Wyld Meinesz s Saha Lipskiy o Cat n ena Riccioli SINUS Luc Korolev retius lera . SMYTHII Ventris rdil Fra Hipparchus FECUNDITATIS Icarus Co ASPERITATIS . Einthoven . Daedalus Grimaldi Mauro . Chaplygin Love . Schlüter . Dellinger s MARE . Hirayama te Ptolemaeus Kästner n Montes . Lucretius o Riphaeus M . Langrenus . Marconi Keeler Heaviside Letronne COGNITUM . Albategnius . Theophilus . Perepelkin M . Langemak o . Chauvenet . Doppler . n Lacus A M s Alphonsus Cyrillus –10 i t –10 –10 . Racah Fridman –10 ° l ° ° ° o e Meitner n a MARE s Pasteur Paschen t s e r P Galois i utumni s . Rocca y Ioffe S . r Colombo Ansgarius Zwicky Aitken e Lamé . Lowell NECTARIS n . Lacus Kondratyuk . Arzachel a e Gassendi MARE . Catharina e . Isaev a Rupes Recta u Vendelinus m s i Vertregt . Houzeau C R . Bullialdus Gagarin . Cyrano . o R Fermi Sternfeld r . Hilbert M d u Fracastorius i p Tsiolkovskiy o l l . Mersenius MARE e . Paracelsus V n e s t r NUBIUM Gibbs er e Darwin . Sklodowska Levi- MARE a Balmer s is Civita . Nassau Purbach . Orlov HUMORUM A l Von der . Gerasimovich ORIENTALE ta Van de i . Werner Pahlen –20° . Hecataeus –20° –20° Graaff –20° Petavius Alden . Byrgius METERS . Leeuwenhoek . Barringer R Pitatus . Neujmin Pavlov o . Aliacensis . Piccolomini 8200 o . O'Day k P alus Curie Epid Deslandres M Vieta em . Thomson iarum Walther . Scaliger o MARE n . Gemma t Rabbi Humboldt e Frisius . s . INGENII Oppenheimer Levi Stevinus 6000 Jules Lacus Milne Excellentiae Verne Apollo Chebyshev R Bolyai oo Eötvös Leibnitz k . Obruchev . Rheita . Orontius Brouwer Stöfler . Brenner . Furnerius 4000 . Maksutov –30° –30° –30° . Langmuir M –30° Parkhurst . Maurolycus Hainzel . Ramsay . Finsen o n Metius . Tycho V te Wilhelm a Buffon Blackett s l Koch Oresme l V Mee i Roche Von Kármán a . Fabricius s Abel C l Barocius o li rd s 2000 i lle . ra Licetus Chrétien R . Pauli Leavitt Janssen B h Alder . o e u Schickard MARE Van der Grissom v i a Magin t . us a Waals rd Cuvier Vallis . Pitiscus 0 . Hopmann Cori Ing Longomontanus hirami . Lamb . Schiller Oken . Bose –40° . –40° –40° Hess . Karrer –40° . Wargentin Vlacq . Hommel Hamilton Jenner Inghirami –2000 Poincaré Abbe Mendel Baade . Phocylides Clavius . AUSTRALE . Minkowski Biela Planck . V Rosenberger a Rydberg ll Scheiner is . Cabannes Fizeau –4000 Prandtl . Segner Lemaître Lyot P Berlag Lippmann Blancanus la e . Mutus n . ck Lyman –50° . –50° –50° –50° . Bettinus Curtius Minnaert Zucchius Pontécoulant Pingré . Manzinus –6000 Antoniadi . Crommelin . Kircher Klaproth Moretus . Chamberlin Petzval Casatus Bailly Short . –8000 . Helmholtz –60° –60° –60° Sikorsky –60° Newton . Boussingault Boguslawsky Schrödinger Zeeman Hausen Schomberger . Neumayer –9900 Le Gentil Demonax No topographic data INTERIOR —GEOLOGICAL SURVEY, RESTON, VA—2002 Scott –70° –70° –70° –70° Prepared on behalf of the Planetary Geology and Geophysics Hale Ashbrook Program, Solar System Exploration Division, Office of Space Drygalski . Amundsen Color-coded Drygalski Science, National Aeronautics and Space Administration –80° –80° topography key –80° –80° Manuscript approved for publication April 23, 2002 –90° –90° SOUTH SOUTH 90 N Elevation values for the near side hemisphere ° Scale 1:10,000,000 (1 mm = 10 km) Scale 1:10,000,000 (1 mm = 10 km) 90° N Elevation values for the far side hemisphere binned in increments of 500 meters. Count is 60° N 60° N At 0° latitude and 0° longitude At 0° latitude and 180° longitude 60° N 60° N binned in increments of 500 meters. Count is number of elevation posts within the bin. Per- Lambert Azimuthal Equal-Area projection Lambert Azimuthal Equal-Area projection number of elevation posts within the bin. Per- cent is count for indicated elevation values NEAR SIDE HEMISPHERE FAR SIDE HEMISPHERE cent is count for indicated elevation values divided by total count. divided by total count. 30° N 30° N L 10M 0/0 RTK L 10M 0/180 RTK Minimum Maximum Count Percent 30° N 30° N Minimum Maximum Count Percent –10000 –9500 –10000 –9500 273 0.00% –9500 –9000 –9500 –9000 751 0.00% –9000 –8500 90° W 60° W 30° W 0° 30° E 60° E 90° E NOTES ON BASE The across-track spacing was based on the orbital ground track and is trol was established by using the global topographic gridded digital ter- derived from the Clementine laser altimeter data. At first the photo- nomenclature (T) and color-coded topo- map of the Moon from the Clementine UVVIS imaging instrument 90° E 120° E 150° E 180° 150° W 120° W 90° W –9000 –8500 1,464 0.01% (270) (300) (330) (0) (30) (60) (90) approximately 60 km (2 ) at the equator. Elevation values were col- rain model developed from the Clementine laser altimeter points to grammetric topographic data exhibited a systematic stair-step error, in graphic data (K) (Greeley and Batson, 1990). [abs.], in Lunar and Planetary Science Conference XXX: Houston, (90) (120) (150) (180) (210) (240) (270) –8500 –8000 0° 0° This sheet is one in a series of topographic maps that presents color- ° 0° 0° –8500 –8000 2,878 0.01% lected at 72,548 points by the Clementine laser altimeter. The estimated estimate elevation values for the Clementine match points. To improve that stereo models closer to the poles had a systematic bias to be higher Lunar and Planetary Institute, abstract no. 1933 [CD-ROM]. –8000 –7500 coded topographic data digitally merged with shaded relief data. OTHER SOURCES OF LUNAR ELEVATION DATA –8000 –7500 4,541 0.02% –7500 –7000 31 0.00% vertical accuracy of points collected by the Clementine laser altimeter the geometry of the control network for the photogrammetric analysis, than stereo models farther from the poles. When this bias was removed, Margot, J.L., Campbell, D.B., Jurgens, R.F., Slade, M.A., 1999, Topog- –7500 –7000 8,761 0.03% ADOPTED FIGURE Two other recent sources of lunar elevation data are from work done by –7000 –6500 304 0.00% is 130 m (Smith and others, 1997). the Clementine match points, which were selected to tie two images the resulting digital terrain model had a bowl-shape appearance with a raphy of the lunar poles from radar interferometry: A survey of –7000 –6500 38,139 0.14% Dr. Tony Cook of the National Air and Space Museum and by Dr. Jean- –6500 –6000 760 0.00% The figure for the Moon, used for the computation of the map projec- The Clementine laser altimeter did not collect data over the lunar north together in order to build the Clementine global mosaic, were transfer- low spot near the pole.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages3 Page
-
File Size-