Noindent 240 <Quad J . Vukman <[< Begin 1 Aligned L Cfwl

Noindent 240 <Quad J . Vukman <[< Begin 1 Aligned L Cfwl

240 .. J period Vukman nnoindentLine 1 C-F-w-L240 n o-h-o-e-rquad J t-m-i . Vukman sub c-m y-h-b h-g-n-b to the power of e-i-i sub n-v-e y-e-g-a s-brackleft b-o-one-parenleft sub three-x-v-e c-e-parenright-parenright comma-a r-w-u-x-e l-i-brackright-s t-e-a i-o-t-n o-parenleft-f-parenleft parenleft-one-n to the powern [ n begin of four-one-sixf a l i g n e d parenright-one-ag C−F−w−L on-period-parenright-w−h−o−e−r t−m−i Linef 2c open−m g parenthesisy−h−b 1 7 h closing−g−n−b parenthesis ^f e−i− bracklefti f n− Tv− parenleft-xe y−e−g−a closings−b r a parenthesisc k l e f t gg commab−o− xone brackright−p a r e n x l e y f brackleftt f three parenleft-T−x−v−e x closing c−e− parenthesisparenright comma−parenright x brackright x comma = 0 comma−a x r− commaw−u−x−e yl− subi−brackright in R sub period−s t−e−a g i−o−t−n o−p a r e n l e f t −f−parenleft parenleft −one−n ^f four−one−s i x parenrightRi g-h t m− utone p− la c-ig a t-in− onperiod .. f open−parenright parenthesis− 1w closingnn parenthesis b y brackleft T open parenthesis x comma-parenright x (open 1 parenthesis 7 ) 1 8 closing [ T parenthesis parenleft brackleft-brackleft−x ) , T open x parenthesis ] x x comma y [ x comma parenleft x x brackleft−T T x open ) parenthesis , x x] closing x parenthesis = 0 comma , x sub ,x brackright y f n Rowin g 1 commaR f Row. gn 2end 0 .f ina lR i g period n e d g n ] 240 J . Vukman Sub t-r ac i-t ng open parenthesis 18 closing parenthesis fro m open parenthesis 7 closing parenthesis o neo b-t a n s brackleft brackleft T open parenthesis x comma-parenright x comma x brackright y n centerline fRi $ g−h $ t m ut p l $ c−i $ a $ t−i $ on nquad f(1)by$[ T ( x e−i−in−v−ey−e−g−as−brackleft four−one−sixparenright−one−a a to theC power− F of− w n ..− dLo ..− rh i− too the− e power− rt − ofm m− eic ..−m ny ..− Rh ..− hbh ..− pg − n − b b − o − one − parenleftthree−x−v−ec−e−parenright−parenrightcomma−ar−w−u−x−el−i−brackright−st−e−ai − o − t − no − parenleft − f − parenleftparenleft − one − n n − period − parenright − w commaopen−parenright parenthesis x open x parenthesis $ g (17) [T parenleft − x); x]xy[parenleft − T x); x]x = 0; x; y R T .. h e .. open parenthesis 9 to the power of closing parenthesis g .. v 2 : n [( 1 8 ) brackleft −brackleft T ( x , x , x x [ T ( x ) , f x g Line 1 brackleft to theRi g power− h t of m brackleft ut p l c − subi a Tt − openi on parenthesis f ( 1 ) b ysub [T ( closingxcomma parenthesis− parenrightx to the power of x comma brackright y] brackright =nbegin plusf array brackleftgf cg brackleft, nn 0 subnend T xf toarray theg powery n in of closingR. parenthesisn ] y brackright comma x plus brackleft brackleft sub T open parenthesis Line 2 open parenthesis 2 0 closing parenthesis comma y; brackright plus brackleft sub brackleft T open (18) brackleft − brackleftT (x; x; xx[T (x); ] = y 2 R: parenthesis sub x closing parenthesis comma y to the power of brackright commax x0 brackright plus sub brackleft brackleft T open parenthesisnnoindent toSub the power $ t− ofr y $ comma ac sub $ i x− brackrightt$ ng(18) = 0 comma from(7)oneo $b−t $ a n s $ [ [ T Sub t − r ac i − t ng ( 18 ) fro m ( 7 ) o neo b − t a n s [[T (xcomma − parenrightx; x]y an d r (P-w x sub comma i h-t-t− tparenright sub ngh e sub ab x o to the , power x of ] x v-f y$ to the power of e-o r r l sub itn 0 to the power of w-parenright e a riv im e n R h p i a-n$ sub a ^ g-tf n openg$ parenthesisnquad d 1n closingquad parenthesisr $ i ^f commam g$ open e parenthesisnquad n n toquad the power$ R of $ parenright-ninenquad h nquad a n d openp parenthesis 2 0 closing parenthesis w eo .. b sub t a i sub n ( x ( n [Line ( 1 x plus brackleft ( n ] T open parenthesis x closing parenthesis comma x y x plus open parenthesis closing parenthesis y brackright Line 2 plus brackleft brackleft xT open parenthesisT y closing h e parenthesis (9) g v comma sub x brackright x-comma x brackright = to the power of x brackleft sub brackleft n centerline fT nquad h e nquad $ ( 9 ^f ) g$ g nquad) v g y] + [[T x y]; x + [[T ( ] y n [ n begin f a l i g n e d g [ ^f [ g f (20)T g ; y(] + ^f [x[T (gx)f; y ); x]g +,[ [T ( ];x ] y = 0; ] + [ [ f T g x ^f ) g y ] , x + [ f [ g f T(x gnne−or w−parenrighte parenright−nine P − wih − t − ttngheabov − f r litn0 a riv i a − ng−t(1); ( a n d ( 2( 2 0 0 ) w ) eo ,b a yi ] + [ f [ g T( f x g ) , y ^f ] g , x ] + f [ g [ T ( ^f y g , t f nx g ] = 0 , nendf a l i g n e d g n ] +[T (x); xyx + ()y] x[[ n hspace ∗fn f i l l g $ P−w f i g h−t−+[[txT ( ty);xf]xngh− commaxg e] ^f =x g f ab o g v−f ^f e−o r g$ r $ l f i t n g 0 ^f w−parenright e g$ a r i v i $ a−n f g−t g (f 1 g ) , ( ^f parenright −nine g$ and(20)weo nquad $ b f t g$ a $ i f n g$ n [ n begin f a l i g n e d g +[T(x),xyx+()y] nn + [ [ f xT g ( y )f , g f x g ] x−comma x ] = ^fxf [ g f [ ggnendf a l i g n e d g n ] Centralizers on semiprime rings .. 241 CentralizersWe have therefore on semiprimebrackleft T open rings parenthesisnquad x241 closing parenthesis comma x brackright yx to the power of 2 minus x to the powerWehavetherefore of 2 y brackleft T open $[ parenthesis T ( x closing x parenthesis ) , commax ] x brackright yx^f 2 plusg xyx − brackleftx ^f 2 Tg openy parenthesis [ T x closing ( x parenthesis) ,x]+xyx[T(x) comma x brackright minus brackleft T open parenthesis ,x] x closing parenthesis− [T(x) comma x brackright xyx ,x = 0 comma ] xyx =x 0comma , y$ in R comma which reduces because of open parenthesis 9 closing parenthesis and open parenthesis 1 5 closing parenthesis to nnoindentbrackleft T open$ x parenthesis , y x closingn in parenthesisR , $ comma which x brackright reduces yx because to the power of ( of 9 2 minus ) and x to ( the 1 5 power ) to of 2 y brackleft T open parenthesis x closing parenthesis comma x brackright = 0 comma x comma y in R period n [[T(x)Left multiplication of the above ,x relation ] by x yx^ givesf 2 g − x ^f 2 g y [ T ( x ) , x ] Centralizers on semiprime rings 241 We have therefore [T (x); x]yx2 − x2y[T (x); x] + xyx[T (x); x] − =x brackleft0 , T x open , parenthesis y n in x closingR. parenthesisn ] comma x brackright yx to the power of 2 minus x to the power of 3 y [T (x); x]xyx = 0; brackleft T open parenthesis x closing parenthesis comma x brackright = 0 comma x comma y in R period x; y 2 R; which reduces because of ( 9 ) and ( 1 5 ) to One .. can .. replace .. in .. the .. above .. relation comma .. according .. to .. open parenthesis 1 5 closing parenthesis comma xnnoindent brackleft T openLeft parenthesis multiplication x closing parenthesis of the above comma relation x brackright by yx .. $ by x $ gives [T (x); x]yx2 − x2y[T (x); x] = 0; x; y 2 R: xy brackleft T open parenthesis x closing parenthesis comma x brackright x comma which gives Equation: open parenthesis 2 1n [x closing parenthesis [T(x)Left multiplication .. xy brackleft of the T ,xabove open relation parenthesis ] by yx^x xgives closingf 2 g parenthesis − x ^f comma3 g xy brackright [ T x to the ( power x of ) 2 minus , x to the] power = of 0 3 y ,brackleft x T , open y parenthesisn in xR. closingn parenthesis] comma x brackright = 0 comma x comma y in R period Left multiplication of the above relationx[T (x by); xT]yx open2 − parenthesisx3y[T (x); x] x = closing 0; x; parenthesis y 2 R: gives Equation: open parenthesis 22 closing parenthesis .. T open parenthesis x closing parenthesis xy brackleft T open parenthesis One can replace in the above relation , according to (15); x[T (x); x]yx by xnnoindent closing parenthesisOne nquad commacan x brackrightnquad r x e top l athe c e powernquad of 2in minusnquad T openthe parenthesisnquad above x closingnquad parenthesisr e l a tx i o to n the , powernquad ofaccording 3 y nquad to nquad brackleft$(15) T open parenthesis ,x[T(x) x closing parenthesis comma x brackright ,x]yx$ = 0 comma x commanquad y inby R period The substitution T open parenthesis x closing parenthesisxy[ yT ( forx); y x] inx; open whichgives parenthesis 2 1 closing parenthesis leads to n beginEquation:f a l i g open n ∗g parenthesis 23 closing parenthesis .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us