Fundamental Engineering Optimization Methods Second Edition

Fundamental Engineering Optimization Methods Second Edition

Fundamental Engineering Optimization Methods Second Edition Kamran Iqbal 1 Contents Preface .......................................................................................................................................................... 5 1 Engineering Design Optimization .......................................................................................................... 6 1.1 Introduction .................................................................................................................................. 6 1.2 Optimization Examples in Science and Engineering ..................................................................... 7 1.3 Notation ...................................................................................................................................... 13 2 Mathematical Preliminaries ................................................................................................................ 14 2.1 Set Definitions ............................................................................................................................. 14 2.2 Function Definitions .................................................................................................................... 15 2.3 Gradient Vector and Hessian Matrix ........................................................................................... 15 2.4 Taylor Series Approximation ....................................................................................................... 17 2.5 Properties of Convex Functions .................................................................................................. 18 2.6 Matrix Eigenvalues and Singular Values ..................................................................................... 19 2.7 Quadratic Function Forms .......................................................................................................... 20 2.8 Vector and Matrix Norms ........................................................................................................... 21 2.9 Linear Systems of Equations ....................................................................................................... 21 2.10 Linear Diophantine System of Equations .................................................................................... 23 2.11 Condition Number and Convergence Rates ................................................................................ 24 2.12 Newton’s Method for Solving Nonlinear Equations ................................................................... 25 2.13 Conjugate-Gradient Method for Solving Linear Equations ......................................................... 25 3 Graphical Optimization ....................................................................................................................... 27 3.1 Functional Minimization in One-Dimension ............................................................................... 27 3.2 Graphical Optimization in Two-Dimensions ............................................................................... 28 4 Mathematical Optimization ................................................................................................................ 35 4.1 The Optimization Problem .......................................................................................................... 35 4.2 Optimality criteria for the Unconstrained Problems .................................................................. 36 4.2.1 First Order Necessary Conditions (FONC) ............................................................................... 37 4.2.2 Second Order Conditions (SOC) .............................................................................................. 37 4.3 Optimality Criteria for the Constrained Problems ...................................................................... 39 4.3.3 Equality Constrained Problems ............................................................................................... 39 4.3.4 Inequality Constrained Problems ............................................................................................ 43 4.4 Optimality Criteria for General Optimization Problems ............................................................. 45 2 4.4.1 Optimality Criteria for Convex Optimization Problems .......................................................... 47 4.4.2 Second Order Conditions ........................................................................................................ 48 4.5 A Geometric Viewpoint ............................................................................................................... 50 4.6 Postoptimality Analysis ............................................................................................................... 51 4.7 Duality Theory ............................................................................................................................. 53 4.7.1 Local Duality ............................................................................................................................ 53 4.7.2 Strong and Weak Duality ........................................................................................................ 54 4.7.3 Duality in Convex Optimization Problems .............................................................................. 55 4.7.4 Separable Problems ................................................................................................................ 56 5 Linear Programming Methods ............................................................................................................ 58 5.1 The Standard LP Problem ............................................................................................................ 58 5.2 Solution to the LP Problem ......................................................................................................... 59 5.2.1 The Basic Solution to the LP Problem ..................................................................................... 60 5.3 The Simplex Method ................................................................................................................... 61 5.3.1 The Simplex Algorithm ............................................................................................................ 61 5.3.2 Tableau Implementation of the Simplex Algorithm ................................................................ 63 5.3.1 Obtaining an Initial BFS ........................................................................................................... 65 5.3.2 Final Tableau Properties ......................................................................................................... 70 5.4 Postoptimality Analysis ............................................................................................................... 70 5.5 Duality Theory for the LP Problems ............................................................................................ 74 5.5.1 Fundamental Duality Properties ............................................................................................. 75 5.5.2 The Dual Simplex Method ....................................................................................................... 76 5.5.3 Recovery of the Primal Solution.............................................................................................. 77 5.6 Optimality Conditions for LP Problems ....................................................................................... 80 5.6.1 KKT Conditions for LP Problems .............................................................................................. 81 5.6.2 A Geometric Viewpoint ........................................................................................................... 82 5.7 The Quadratic Programming Problem ........................................................................................ 83 5.7.1 Optimality Conditions for QP Problems .................................................................................. 83 5.7.2 The Dual QP Problem .............................................................................................................. 85 5.8 The Linear Complementary Problem .......................................................................................... 86 5.9 Non-Simplex Methods for Solving LP Problems.......................................................................... 90 6 Discrete Optimization ......................................................................................................................... 93 3 6.1 Discrete Optimization Problems ................................................................................................. 93 6.2 Solution Approaches to Discrete Problems ................................................................................ 94 6.3 Linear Programming Problems with Integral Coefficients .......................................................... 95 6.4 Binary Integer Programming Problems ....................................................................................... 95 6.5 Integer Programming Problems .................................................................................................. 97 6.5.1 The Branch and Bound Method .............................................................................................. 98 6.5.2 The Cutting Plane Method ...................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    132 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us