Role in Cocaine Addiction Versus Maternal Immune Activation

Role in Cocaine Addiction Versus Maternal Immune Activation

TUMOR-NECROSIS-FACTOR-ALPHA-MEDIATED PLASTICITY IN BEHAVIORAL MODELS: ROLE IN COCAINE ADDICTION VERSUS MATERNAL IMMUNE ACTIVATION by Sarah Konefal Integrated Program in Neuroscience Centre for Research in Neuroscience McGill University April 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Neuroscience © SarahKonefal, 2017 i TABLE OF CONTENTS ABSTRACT viii RÉSUMÉ x DEDICATION xii ACKNOWLEDGEMENTS xiii AUTHOR CONTRIBUTIONS xv LIST OF ABBREVIATIONS xviii LIST OF FIGURES xx CHAPTER 1: INTRODUCTION 1 1.1 TNF: review & effects synaptic plasticity 1 1.1.1 Introducing the pro-inflammatory cytokine, TNF 1 1.1.2 TNF and neuroinflammation 3 1.1.3 TNF-mediated homeostatic synaptic plasticity 4 1.1.4 Role of TNF in neurodevelopment 8 1.2 Role of glia in TNF-mediated plasticity 9 1.2.1 Microglia and astrocytes as key sources of TNF in the brain 10 1.2.2 Overview of microglia 11 1.2.3 Overview of astrocytes 15 1.3 Synaptic plasticity & drug addiction 18 ii 1.3.1 The mesolimbic pathway 18 1.3.2 Glutamatergic plasticity in the nucleus accumbens (NAc) 20 1.3.3 Cocaine-induced glutamatergic plasticity in the NAc 22 1.4 Structural plasticity: dendritic spines 23 1.4.1 Function of dendritic spines 23 1.4.2 Regulation of dendritic spines 25 1.5 Maternal immune activation (MIA) model of neuropsychiatric disorders 27 1.6 Overall thesis rationale and research objectives 29 1.7 References for Chapter 1 32 Figure legends for Chapter 1 55 Figures for Chapter 1 56 PREFACE TO CHAPTER 2 57 CHAPTER 2: MICROGLIAL TNFα SUPPRESSES COCAINE-INDUCED PLASTICITY AND BEHAVIORAL SENSITIZATION 58 Abstract 59 Introduction 60 Materials and Methods 61 Animals 61 Locomotor activity 62 iii Reagents 63 Electrophysiology recording 63 Immunohistochemistry 64 RNA isolation and quantitative PCR 66 Cell culture 67 Isolation of adult microglia 67 Statistical analysis 68 Results 71 TNF antagonizes cocaine-induced behavioral sensitization 71 Cocaine increases TNF levels in the Nucleus Accumbens 72 Cocaine induces TNF expression specifically in microglia 72 Microglia are activated by cocaine and antagonize 73 cocaine-induced behavioral sensitization Cocaine-induced TNF causes synaptic depression on D1-MSNs 74 Dopamine increases TNF mRNA in microglia through D2 receptors 76 MPLA reduces synaptic strength in the nucleus accumbens via 78 microglia activation and TNF production MPLA decreases behavioral sensitization to cocaine via TNF 79 Discussion 80 Acknowledgements 84 iv References for Chapter 2 84 Figure legends for Chapter 2 89 Figures for Chapter 2 89 PREFACE TO CHAPTER 3 108 CHAPTER 3: GLIAL TNF REGULATES DENDRITIC SPINE DENSITY IN THE NUCLEUS ACCUMBENS 109 Abstract 110 Introduction 111 Materials and Methods 113 Mice 113 Immunohistochemistry 113 Cocaine injections 114 Diolistics 115 Image collection and analysis 115 Statistics 116 Results 116 TNF negatively regulates dendritic spine density and cocaine-induced spinogenesis in NAc core MSNs 116 v Microglia in the NAc of TNF-/- mice have no gross abnormalities in microglia numbers or activation 118 Role of astrocytic versus microglial TNF in the regulation of MSN spine density 119 Discussion 120 Acknowledgements 124 References for Chapter 3 125 Figure legends for Chapter 3 130 Figures for Chapter 3 133 PREFACE TO CHAPTER 4 137 CHAPTER 4 TNF-MEDIATED HOMEOSTATIC SYNAPTIC PLASTICITY IN BEHAVIORAL MODELS: TESTING A ROLE IN MATERNAL IMMUNE ACTIVATION 138 Abstract 139 Introduction 140 TNF-mediated synaptic plasticity in the brain 140 Implications for TNF in an MIA model of neurodevelopment disorders 143 Materials and Methods 147 Breeding 147 Behavioral testing – social interaction 149 Behavioral testing – elevated plus maze 149 vi Behavioral analysis 150 Statistical analysis 151 Results 151 TNF is not required for loss of social preference in MIA offspring 151 TNF is not required for the change in anxiety-related behaviour induced by MIA 154 Discussion 155 Acknowledgements 161 References for Chapter 4 162 Figure legends for Chapter 4 168 Figures for Chapter 4 172 CHAPTER 5: GENERAL DISCUSSION AND CONCLUSIONS 174 5.1 Summary 174 5.2 The dual nature of TNF-mediated plasticity in the brain 175 5.3 Role of neuroinflammation and TNF in MIA versus drug addiction 179 5.4 Dendritic spine structural plasticity as a mechanism of HSP 185 5.5 Differential roles of microglial and astrocytic TNF 188 5.6 D2 Receptor activation: a novel molecular and cellular pathway regulating TNF synthesis in microglia 191 5.7 Conclusion 194 5.8 References for Chapter 5 195 vii ABSTRACT Evidence suggests that adaptive physiological responses in the brain contribute to normal circuit function. Various mechanisms, including the brain’s inflammatory response, induce compensatory changes to maintain normal circuit function after disruption caused by psychoactive drugs or environmental stressors. One such mechanism involves glial-derived tumor necrosis factor-alpha (TNF). TNF is a pro-inflammatory cytokine which mediates both inflammation and a type of compensatory plasticity known as homeostatic synaptic plasticity. Adaptive roles for TNF have been demonstrated in vivo in sensory cortices after blockade of sensory input, and in the striatum after chronic treatment with antipsychotics. However, dysregulated inflammatory responses in the brain, which include elevation of TNF, can be detrimental in many disease models. This doctoral thesis examines the contribution of TNF- mediated plasticity in two models where behavioral alterations are associated with both elevated TNF levels in the brain and altered synaptic function. In the first part of the thesis, we investigate the effects of TNF on the behavioral and the physiological changes occurring in mice after repeated cocaine administration. We find that by reducing synaptic strength in the nucleus accumbens (NAc), TNF counteracts cocaine-induced plasticity in the NAc which then mitigates the sensitization to repeated cocaine administration. Further, this adaptive TNF response is specifically mediated by microglia and suggests that modulation of microglia activation could be an avenue of treatment for drug addiction. We further demonstrate that TNF negatively regulates cocaine-induced dendritic spine formation in the NAc and that the basal spine density in the NAc is mediated by astrocytic TNF. We then explored whether TNF is involved in adult behavioral changes induced by prenatal immune activation, which are viii relevant to neuropsychiatric disorders. We found that genetic deletion of TNF had no effect on social and anxiety behaviors induced by early immune challenge. We propose that TNF- mediated plasticity in the brain has no distinct role in models of persistent neuroinflammation where other pro-inflammatory cytokines are significantly elevated. Understanding how and when TNF-mediated plasticity is engaged by different kinds of experience is important for understanding the molecular and cellular basis of homeostatic plasticity in vivo. ix RÉSUMÉ À ce jour, les données suggèrent que la physiologie du cerveau comprend des réponses adaptives qui contribuent à la fonction normale des circuits. Divers mécanismes, y compris la réponse inflammatoire du cerveau, causent des changements compensatoires aux synapses suivant une perturbation causée par des médicaments psychoactifs ou des facteurs de stress environnemental. Un tel mécanisme implique le TNF (Facteur de Nécrose Tumorale) qui est une cytokine pro-inflammatoire dérivée de cellules gliales. Le TNF fait partie du processus inflammatoire mais est aussi impliqué dans un type de plasticité compensatoire qui s’appelle « Homeostatic synaptic plasticity. » Des rôles adaptatifs du TNF ont été démontrés in vivo dans les régions corticaux sensoriels après blocage de l'entrée sensorielle de même que dans le striatum après un traitement chronique avec des antipsychotiques. De plus, une réponse inflammatoire dérégulée dans le cerveau, incluant l’élévation du TNF, peut avoir un effet délétère dans de nombreuses maladies. Cette thèse de doctorat examine la contribution de TNF dans deux modèles où des changements comportementaux sont associés à des niveaux élevés de TNF ainsi qu’une fonction synaptique altérée. Dans la première partie de la thèse, nous étudions les changements comportementaux et synaptiques causés par TNF chez la souris après l’administration répétée de cocaïne. Nous avons découvert qu'en réduisant la transmission synaptique dans le noyau accumbens (NAc), le TNF limite la plasticité causée directement par la cocaïne dans la NAc. Ce mécanisme atténue la réponse comportementale à la cocaïne notamment la sensibilisation locomotrice. En outre, cette réponse adaptative dirigée par TNF est spécifiquement médiée par l’activation microgliale ce qui suggère que la x modulation des cellules microgliales pourrait être une approche thérapeutique intéressante pour la dépendance. Nous démontrons aussi que le TNF dirige une réduction d’épines dendritiques suivant l’administration de la cocaïne dans le NAc et que la densité basale des épines dendritiques dans le NAc est médiée par le TNF dérivé des astrocytes. Ensuite, nous avons évalué l’impliquation de TNF dans les changements comportementaux induits par l'activation immunitaire prénatale. Ces changements comportementaux sont aussi impliqués dans certains troubles neuropsychiatriques. Nous avons constaté que la délétion génétique du TNF n'avait aucun effet sur les comportements sociaux et anxieux induits par l'activation immunitaire prénatale.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    229 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us