Background A database model contains the means for ¡ Specifying particular data structures ¡ Constraining the data sets Database Theory: Lecture 1 ¡ Manipulating the data Introduction and the relational model A DDL (Data Definition Language) provides the means to specify the structures and constraints. Dr G.M. Bierman A DML (Data Manipulation Language) provides the means to manipulate the data; specifically querying and updating. www.cl.cam.ac.uk/Teaching/2002/DBaseThy Database Theory 2003 1 c GMB/AD Database Theory 2003 2 c GMB/AD ¢ Database models This lecture course Database models are typically characterized by the prominent data structure, e.g. We will study some of these database models from a theoretical perspective. ¥ £ Graphs: Study closely the data model Network model – ¥ Study closely the associated query languages: – Semantic model – Choices of query languages – Object model – Relationships between them – XML (?) – Their characteristics (typically expressivity) £ Trees: Three database models considered in this course: – Hierarchical model 1. Relational £ Relations: 2. Object – Relational model 3. Semi-structured/XML Database Theory 2003 3 c GMB/AD Database Theory 2003 4 c GMB/AD ¦ ¤ Warning Books This is a brand new course! Recommended textbooks: There will be eight lectures, two examples classes, and two lecturers! ¨ Foundations of databases Abiteboul, Hull and Vianu. Addison Wesley, 1995 Schedule: ¨ Data on the web Abiteboul, Buneman and Suciu. Morgan Kaufmann, 2000. 1. GMB - (now!) relational model Also: Some useful information in any of the database books from the IB 2. AD - Relational calculus Databases course. 3. AD - Deductive databases 4. AD - Recursion and negation 5. AD - Expressivity and complexity 6. GMB - Complex values 7. GMB - Object model 8. GMB - Semistructured/XML model Database Theory 2003 5 c GMB/AD Database Theory 2003 6 c GMB/AD © § What is the relational model? Codd 70: – Data structure: flat relations – Simple algebra of queries The relational model – No constraints – No updates Codd 72-: – Same data structure – Second query language (based on FOL) – Proof of equivalence to algebra language – Integrity constraints - functional dependencies Database Theory 2003 7 c GMB/AD Database Theory 2003 8 c GMB/AD What is the relational model? cont. Basics Therafter a whole host of extensions. Thus the relational model means the class Fix a countably infinite set of attribute names, with a total order of database models that have relations as the core data structure and incorporate Fix a single countably infinite set : the underlying domain some of Codd's approach. Fix a countably infinite set of relation names Assume that there is a sort for each element of , i.e. a function ! . " # The arity of a relation $ is then defined %&' ( 01 & ( + + ) * ,.- / * , / A relation schema is just a relation name. We may write $ 3 to denote $ is 2 4 5 of sort 3 , and $ to denote it is of arity 265 4 A database schema is just a nonempty finite set of relation schema, e.g. 8 < < < 3 $ 3 $ 7 : : = = ; ; 4> 2 9 2 4 Database Theory 2003 9 c GMB/AD Database Theory 2003 10 c GMB/AD ? Example relations Choicepoint: names Q: Are the attribute names part of the explicit database schema or not? F H P AB CD E IJ A CK IQ ER A B I AU T C @ M M S M O O G L N L N L NV In SQL they are available, e.g. SELECT p.Name FROM Persons p Movies Title Director Actor Magnolia Anderson Moore Guide Title Cinema Time But are they compiled away by the system to just integers? Magnolia Anderson Cruise Rocky Warner 12:00 More theoretically: Spiderman Raimi Maguire Spiderman Picturehouse 19:00 X _ ]^ : A tuple over relation schema Y [ is a map from [ to Named Z \ Spiderman Raimi Dunst ... ... Spiderman Phoenix 19:00 X : A tuple over relation schema Y is a element of the cartesian Unnamed Z6` \ Rocky Avildsen Stallone Magnolia Picturehouse 22:00 _ba product ]^ RockyII Stalone Stallone The choice of model impacts on the query language. Location Cinema Address Tel Having assumed a total order on the attribute names provides us with a Picturehouse Cambridge 504444 correspondence between the two. Thus we'll flip between the two during this Phoenix Oxford 512526 course Warner Cambridge 560225 Database Theory 2003 11 c GMB/AD Database Theory 2003 12 c GMB/AD c W Database Database Theor Theor A (Simplest SPC y y quer 2003 2003 y quer © ª Ê possib is y « well-f ² © ª ¦ © ª d le Ar © ª ormed algebr © ª ity ¦ ¤ «  ² e ¶ ÃÄ Å µ e f Å ¥ ¦ h h h h h Å ³ » ¶ · ¦ Unnamed: judgements Ä § ¨ a ¤ « ® wr ¸ ¶ first) ¹ Æ g u n n d z ¦ © ² ij6k t « ¦ ¹ ¼ º o v o p o p a ² « ¹ ³ º ´ À schema ¦ ¾ w x lm q t x ½ Á d x ´ Á r r w d o y d Á s s ½ r d ´ s SPC Ë ¿ º f or 15 13 if Base Car Projection Select Select Singleton there © ª SPC © ª algebr tesian ª © relation « e ² (attr (constant) © ª xists À ² « © ª ¦ constant quer À È ² product ib ¦ a µ ute) Ì · ¶ ¬­ ® ¦ such ² Ç « ¿ ies ³ » ª © ¯° ¹ « ² « relation ¦ ® º that ± » É ² Ç ¦ « ¼ » ¹ Ë Í ´ ½ ¾ º Ê Î Ì . Ï { c c GMB/AD GMB/AD Database Database Theor Theor ý þ Aside: What Alter List | Ð y y Ð ë 2003 2003 } ÿ á ìí î | the ~ î nativ î Ð Ð Ð à Ð à ä Ð ð is Ð 6 í ~ ¡£¢ Some á â á â Ð name ÐÛÜ Ý this? 6 á ely: ¤ ó ï é ã ÿ ä ô Ù ä Ù ä Ù ä } Ð Ð Ñ Þß Ú Ú Ú ¥¦§ quer (Assume | and Ò Ò Ò Ò Ò Ò Ò Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó Ó 6 ¨ 6 ies © addresses ÔÕ Ö ÔÕ Ö ÔÕ Ö ÔÕ Ö ÔÕ Ö ÔÕ Ö × × × × × × can 6 Ý ÛÜ ÛÜ Û å Û å ÛÜ } Ø | å å retur is } Ù Ñ Almodo ~ æ æ of è ð Ù6õ Ù Almodo Þß Ú of ð ~ ä ä ñ Ú ò Ð Ð n ar Ð Ð Ú ñ ò â ò cinemas Ò Ò 6 ò ü ity ò Ò Ó Ò Ó Semantics ò ã Example f v or å å ñ å ç ç ð ñ ar å v ) ar all â Ù è Ù è Ù ö è Ù Ú Ú instances ñ ÷ Ú é pla Ý × × where Ú å 16 14 Þ Ù6õ ying å ß ç Ù ê Ó ñ Ú ò ò Úß æ ò a , ä Ð Ð Almodo ñ ÷ ù ú ù ú e ¡¢ Ò .g. Ò Ó ß Ù ø ä ä ð û ð û Ú Þ v å ø ö ar ç film æ ä Ð ð Ð Ò Ò Ó ñ ÷ æ ô ä Ð Ð Ò Ò Ó ß £ c c GMB/AD GMB/AD Database Database Theor Theor Ex 2. 1. 3. 2. 1. p p p p p y y er 2003 2003 + F Code Equijoin Generaliz Inter A W Note: W Recall: Of e cise – .g. or . e e natur " f W malise or ha wr / } ~ 0 section - e'll m 1 up W ite v al 1 e T e need uples these 2 3 them to join } do ed the where ensure 4 5 not Selection 3 oper to semantics are as oper where be allo , ! Gener ator e functions 0 that ators .g. ab w " 1 le ! Named repeated re ucv 2 6 the # to v of $ " eals 4 w 0 rename aliz 5 result the 6 # x q 1 % $ y z itself: % to equijoin 2 3 $ ed % names 5 3 of w rs perspectiv % BC { % attr # & $ a | D 7 8 % SPC join t quer 19 17 ib 2 6 where oper in # & utes on 9: 4 a y 5 3 ; <= and the relation ator algebr does E # * > ; ? common 5 ' 6 e is not @ ( @ + sor a " ha 5 ) 6 t and v - 8 7 attr e . repeated # * ib 9: utes is ; A = + " > ; ? names , @ @ or , F c c GMB/AD GMB/AD Database Database Theor Theor quer Pr where Define SPJR y y oposition 2003 2003 y h i \ an quer ] ^ j G SPC in H I ] _ K y J 1 nor K K F nor J ` a H L mal or MNO mal e ] Ncb v f or er P f m or Q y ] d Named: RS d (e m such d xtended) T to ] ^ c be U Nor that S U U a e T quer k k O mal N N f h SPC SPJR l lnm P Q y V d ] of quer f d 20 18 k S R or k d h i the f algebr ms j ] T Base Natur Renaming Projection Select Select Singleton y l l f g h . or S W , X m there al relation M Y (attr (constant) join a Q constant e ib T xists utes) U U U an T relation Y e xtended Z [ [ o c c GMB/AD GMB/AD Database Database Theor Theor × × × y y 2003 2003 A where Nor Can Ø Ù corresponding Ú mal Û Ü define Ü Ü ó Û Ù f or ô õ Ý Þß m: similar Sor ¡ ¢ ö ÷ ¡ ¢ àcá ¢ ¡ ¡ ¢ ¡ ¢ ß â ã nor t ô « £ £ £ ¡ ¢ « gener « á µ judgements ä « ¬ mal ¡ ¢ µ ÀÁ â ­ ® â åæ ô ø £ µ ø ¯ alizations ¦ f ø or çè « ¿ º ° £ ¦ « ¡ ô £ á ¤ ­ m ± ¡ ¢ é »¼ ½ ½ theorem ê é ½ µ æ é ¼ µ  ² ¶ çè ¶ ­ More « ¿ ß £ ¶ ù to ¾ ß ¦ ¿ ² ° ¡ ¢ f SPC « àcá £ or ¿ ± ú 23 21 ¦ · ¡ ¢ ¡ ¢ ª ¸ ê â £ ã SPJR « ø ô algebr ø ¡ ¢ µ ø ² ¶ ä ¬ ¤¥§¦ ¶ ô ê ­ ® £ ¶ ú ¡ ¢ ¦ ¦ æ å ¦ à a û ² ´ æ Ä ¨ ° quer ° çè £ « « · ©ª £ £ £ « ² ³ and ¹ ± ± distinct ¦ ë Å á ì Þ§í ° ies ü î are ± Þ ï Ú distinct â ð çè é é é çè í ý Æ c c GMB/AD GMB/AD î ñ Þ ï ò ð ð ð Database Database Theor Theor The W Where Aside 3.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages47 Page
-
File Size-