Chapter 10 Rotation Rotation • Rotational Kinematics: Angular velocity and Angular Acceleration • Rotational Kinetic Energy • Moment of Inertia • Newton’s 2nd Law for Rotation • Applications MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 2 Angular Displacement y θ is the angular position. θf Angular displacement: ∆θ θi x ∆θ = θ f −θi Note: angles measured CW are negative and angles measured CCW are positive. θ is measured in radians. 2π radians = 360 ° = 1 revolution MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 3 Arc Length y arc length = s = r ∆θ θf r ∆θ θi x s ∆θ = ∆θ is a ratio of two lengths; it is a r dimensionless ratio! MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 4 Angular Speed The average and instantaneous angular velocities are: ∆θ ∆θ ωav = and ω = lim ∆t ∆t→0 ∆t ω is measured in rads/sec. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 5 Angular Speed y An object moves along a circular path of radius r; what is its θf average speed? r ∆θ θi x total distance r∆θ ∆θ v = = = r = rω av total time ∆t ∆t av Also, v = rω (instantaneous values). MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 6 Period and Frequency The time it takes to go one time around a closed path is called the period (T). total distance 2πr v = = av total time T 2π Comparing to v = r ω: ω = = 2πf T f is called the frequency , the number of revolutions (or cycles) per second. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 7 Comparison of Kinematic Equations Angular Linear Displacement Velocity Acceleration Velocity MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 8 Rotational Kinetic Energy 12 1 2 KER =2 I ω =∑ 2 m i v i i 2 12 1 1 2 2 ∑2 mii v = ∑ 2 m ii() r ω = ∑ 2 m ii r ω i i i 12 2 1 2 = 2∑ mi r i ω = 2 I ω i MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 9 Estimating the Moment of Inertia Point particle assumption. The particle is at the center of mass of each rod segment. ML2 12 3 2 5 2 I=ML=∑ 2 + + 36 6 6 ML2 35 35ML 2 = == 0.324ML 2 3 36 108 The actual value is I = (1/3) ML 2 MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 10 Moment of Inertia: Thin Uniform Rod A favorite application from calculus class. M M L I = ∫∫∫x22 dm = xλ dx = x 2 dx = ∫ x 2 dx L L 0 1 M 1 I = L3 = ML 2 3 L 3 MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 11 MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 12 Parallel Axis Theorem The Parallel Axis theorem is used with the center of mass moments of inertia found in the table to extend those formulas to non- center of mass applications 2 I = Icm + Mh MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 13 Application of the Parallel Axis Theorem 2 2 1 I = Icm + Mh Icm =12 ML L 2 I=I +M cm 2 12 1 2 I =12 ML + 4 ML 1 2 I =3 ML MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 14 Torque A torque is caused by the application of a force, on an object, at a point other than its center of mass or its pivot point. hinge Q: Where on a door do you normally push to open it? P A: Away from the hinge. u s h A rotating (spinning) body will continue to rotate unless it is acted upon by a torque. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 15 Torque Torque method 1: Top view of door F F⊥ Hinge θ end F|| τ = rF ⊥ r = the distance from the rotation axis (hinge) to the point where the force F is applied. F⊥ is the component of the force F that is perpendicular to the door (here it is Fsin θ). MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 16 Torque The units of torque are Newton-meters (Nm) (not joules!). By convention: • When the applied force causes the object to rotate counterclockwise (CCW) then τ is positive. • When the applied force causes the object to rotate clockwise (CW) then τ is negative. Be careful with placement of force vector components. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 17 Torque Torque method 2: τ = r⊥ F r⊥ is called the lever arm and F is the magnitude of the applied force. Lever arm is the perpendicular distance to the line of action of the force from the pivot point or the axis of rotation. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 18 Torque F Top view of door Hinge r θ end θ Line of action of the Lever force arm r sin θ = ⊥ τ = r F r The torque is: ⊥ = rF sin θ Same as r⊥ = r sin θ before MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 19 The Vector Cross Product τ = r× F τ = r F sin θ = rFsin θ The magnitude of C C = ABsin( Φ) The direction of C is perpendicular to the plane of A and B. Physically it means the product of A and the portion of B that is perpendicular to A. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 20 Vector Nature of the Cross Product In rotation the direction of the vectors can be determined by using the right-hand rule MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 21 The Right-Hand Rule Curl the fingers of your right hand so that they curl in the direction a point on the object moves, and your thumb will point in the direction of the angular momentum. Torque is an example of a vector cross product MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 22 Torque (Disk) - F t - Component The radial component Fr cannot cause a rotation. Only the tangential component, F t can cause a rotation. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 23 Torque (Disk) - Lever Arm Method Sometimes the Lever Arm method is easier to implement, especially if there are several force vectors involved in the problem. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 24 Torque Examples Hanging Sign Meter stick balanced at 25cm. A Winch and A Bucket Tension in String - Massive Pulley Atwood with Massive Pulley Two Blocks and a Pulley Bowling Ball Loop, Disk, Sphere and Block MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 25 Equilibrium The conditions for equilibrium are: ∑F = 0 Linear motion ∑ τ = 0 Rotational motion For motion in a plane we now have three equations to satisfy. ∑Fx= ∑ F y =0; ∑ τ z = 0 MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 26 Using Torque A sign is supported by a uniform horizontal boom of length 3.00 m and weight 80.0 N. A cable, inclined at a 35 ° angle with the boom, is attached at a distance of 2.38 m from the hinge at the wall. The weight of the sign is 120.0 N. What is the tension in the cable and what are the horizontal and vertical forces exerted on the boom by the hinge? MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 27 Using Torque This is important! y FBD for the bar: You need two components for F, Fy T not just the expected θ perpendicular normal X Fx x force. Should be CM wbar Fsb )1( ∑ Fx = Fx −T cos θ = 0 Apply the conditions for equilibrium to the bar: )2( ∑ Fy = Fy − wbar − Fsb +T sin θ = 0 L )3( ∑τ = −wbar − Fsb ()()L + T sin θ x = 0 2 MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 28 Using Torque L w + F ()L bar 2 sb Equation (3) can be solved for T: T = xsin θ = 352 N Equation (1) can be solved for F x: Fx = T cos θ = 288 N Fy = wbar + Fsb −T sin θ Equation (2) can be solved for F y: = − 00.2 N MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 29 A Winch and a Bucket Finally a massive pulley and massive string problem. The pulley has its mass concentrated in the rim. Consider it to be a loop for moment of inertia considerations. This example in the book takes a couple of short cuts that are not obvious. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 30 A Winch and a Bucket The origin of the y-axis is placed at the level of the axis of the winch. The initial level of the handle of the bucket is also placed at the origin. This simplifies distance measurements for figuring the gravitational potential energy. MFMcGraw-PHY 2425 Chap_10Ha-Rotation-Revised 10/13/2012 31 A Winch and a Bucket Tricks - For a hoop or any other object similar in construction all the mass is concentrated along the outside edge. For these objects the rotational KE and the linear KE are identical in form. Therefore the rotational KE of the winch and the cable on the winch are represented by their linear forms and no details are given. v 2 KE =1 I ω2= 1 (mr 2 ) = 1 mv 2 = KE R2 2r 2 The cable on the winch and the portion falling are combined together in one KE term without a word of explanation.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages49 Page
-
File Size-