Infinitesimal Affine Transformations in the Tangent Bundle of a Riemannian Manifold with Respect to the Horizontal Lift of an Affine Connection

Infinitesimal Affine Transformations in the Tangent Bundle of a Riemannian Manifold with Respect to the Horizontal Lift of an Affine Connection

Hacettepe Journal of Mathematics and Statistics Volume 35 (2) (2006), 155 { 159 INFINITESIMAL AFFINE TRANSFORMATIONS IN THE TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD WITH RESPECT TO THE HORIZONTAL LIFT OF AN AFFINE CONNECTION A. Gezer¤y and K. Akbulut¤ Received 28 : 02 : 2006 : Accepted 04 : 12 : 2006 Abstract The main purpose of the present paper is to study properties of vertical in¯nitesimal a±ne transformation in the tangent bundle of a Riemann- ian manifold with respect to the horizontal lift of an a±ne connection, and to apply the results obtained to the study of ¯bre-preserving in¯n- itesimal a±ne transformations in this setting. Keywords: Lift, Tangent bundle, In¯nitesimal a±ne transformation, Fibre-preserving transformation. 2000 AMS Classi¯cation: 53 B 05, 53 C 07, 53 A 45 1. Introduction Let Mn be a Riemannian manifold with metric g whose components in a coordinate h neighborhood U are gji, and denote by ¡ji the Christo®el symbols formed with gji. If, in ¡1 the neighborhood ¼ (U) of the tangent bundle T (Mn) over Mn, U being a neighborhood H of Mn, then g has components given by ¡t g + ¡tg g H g = j ti i jt ji µ gji 0 ¶ i i h j h h with respect to the induced coordinates (x ; y ) in T (Mn), where ¡i = y ¡ji, ¡ji being the components of the a±ne connection in Mn. Let g be a pseudo-Riemannian metric. Then the horizontal lift H g of g with respect H H C to r is a pseudo-Riemannian metric in T (Mn). Since g is de¯ned by g = g ¡ γ(rg), ¤Department of Mathematics, Faculty of Art and Sciences, AtaturkÄ University, 25240, Erzu- rum, Turkey. E-mail: (A. Gezer) [email protected] (K. Akbulut) [email protected] yThis paper is supported by TUBITAK grant number 105T551/TBAG-HD-112 156 A. Gezer, K. Akbulut where γ(rg) is a tensor ¯eld of type (0; 2), which has components of the form γ(rg) = ysr g 0 s , we have that H g and C g coincide if and only if rg = 0 [1, p.105]. µ 0 0¶ 2 j i If we write ds = gjidx dx the pseudo-Riemannian metric in Mn given by g, then H the pseudo-Riemannian metric in T (Mn) given by the g of g to T (Mn) with respect to an a±ne connection r in Mn is 2 j i (1) ds = 2gji±y dx ; ~ j j ~j l k ~h h ~ where ±y = dy +e¡lky dx and ¡ji = ¡ij are components of the connection r de¯ned ~ 1 by rX Y = rY X + [X; Y ] ; 8 X; Y 2 T0 (Mn), [1, p.67 ]. H We shall now de¯ne the horizontal lift r of the a±ne connection r in Mn to T (Mn) by the conditions H V H H rV X Y = 0; rV X Y = 0; (2) H V V H H H rH X Y = (rX Y ) ; rH X Y = (rX Y ) ; 1 H H K for X; Y 2 =0(Mn). From (2), the horizontal lift r of r has components ¡JI such that H k k H k H k H k H k¹ ¡ij = ¡ij ; ¡i¹j = ¡¹{j = ¡¹{¹j = ¡¹{¹j = 0; (3) H k¹ s k s k H k¹ H k¹ k ¡ij = y @s¡ij ¡ y Rsij ; ¡¹{j = ¡i¹j = ¡ij k with respect to the induced coordinates in T (Mn), where ¡ij are the components of r in Mn. Let g and r be, respectively, a pseudo-Riemannian metric and an a±ne connection such that rg = 0. Then H rH g = 0, where H g is a pseudo-Riemannian metric. The connection H r has nontrivial torsion even for the Riemannian connection r determined by g, unless g is locally flat [1, p.111]. 1 Let there be given an a±ne connection r and a vector ¯eld X 2 =0(Mn). Then the 1 Lie derivative LX r with respect to X is, by de¯nition, an element of =2(Mn) such that (4) (LX r)(Y; Z) = LX (rY Z) ¡ rY (LX Z) ¡ r[X;Y ]Z 1 for any Y; Z 2 =0(Mn). In a manifold Mn with a±ne connection r, an in¯nitesimal a±ne transformation 0 h h h 1 n 1 x = x + X (x ; : : : ; x )¢t de¯ned by a vector ¯eld X 2 =0(Mn) is called an in¯ni- tesimal a±ne transformation if LX r = 0, [1, p.67 ]. The main purpose of the present paper is to study the in¯nitesimal a±ne transforma- H tion in T (Mn) with a±ne connection r. 2. Vertical in¯nitesimal a±ne transformations in a tangent bundle with H r ® From (4) we see that, in terms of the components ¡γ¯ of r, X is an in¯nitesimal a±ne transformation in the m-dimensional manifold Mn if and only if, ® ¸ ® ¸ ® ® ¸ ® ¸ (5) @γ @¯ X + X @¸¡γ¯ ¡ ¡γ¯ @¸X + ¡¸¯ @γ X + ¡γ¸@¯ X = 0; ®; ¯; : : : = 1; : : : ; m: Let there be given in Mn with metric g an a±ne connection r with Christo®el symbols k ~ ~ i ~ ¹{ @ @ @ ¡ij . Let X = X @i + X @¹{, where @i = @xi , @¹{ = @yi = @x¹{ , ¹{ = n + 1; : : : ; 2n be a vector ¯eld in T (Mn). Then, taking account of (3), we can easily see from (5) that X~ In¯nitesimal A±ne Transformations 157 H is an in¯nitesimal a±ne transformations in T (Mn) with r if and only if the following conditions (6){(13) hold: ~ h ~ k h k ~ h k ~ h h ~ k h ~ k @j @iX + X @k¡ji ¡ (¡ji@kX + @¡ji@k¹X ) + ¡ki@j X + ¡jk@iX (6) s k ~ h + y Rsji@k¹X = 0; ~ h k ~ h h ~ k (7) @j @¹{X ¡ ¡ji@k¹X + ¡jk@¹{X = 0; ~ h k ~ h h ~ k (8) @¹j @iX ¡ ¡ji@k¹X + ¡ki@¹j X = 0; ~ h (9) @¹j @¹{X = 0; ~ h¹ ~ k h ~ k¹ h k ~ h¹ k ~ h¹ h ~ k @j @iX + (X @k@¡ji + X @k¡ji) ¡ (¡ji@kX + @¡ji@k¹X ) + (@¡ki@j X h k¹ h k h k¹ k¹ h s k h (10) + ¡ki@j X~ ) + (@¡jk@iX~ + ¡jk@iX~ ) ¡ X~ Rkji ¡ y X~ @kRsji s k ~ h¹ s h ~ k s h ~ k + y Rsji@k¹X ¡ y Rski@j X ¡ y Rsjk@iX = 0; ~ h¹ ~ k h k ~ h¹ h ~ k h ~ k h ~ k¹ @j @¹{X + X @k¡ji ¡ ¡ji@k¹X + ¡ki@j X + (@¡jk@¹{X + ¡jk@¹{X ) (11) s h k ¡ y Rsjk@¹{X~ = 0; ~ h¹ ~ k h k ~ h¹ h ~ k h ~ k¹ h ~ k @¹j @iX + X @k¡ji ¡ ¡ji@k¹X + (@¡ki@¹j X + ¡ki@¹j X ) + ¡jk@iX (12) s h ~ k ¡ y Rski@¹j X = 0; ~ h¹ h ~ k h ~ k (13) @¹j @¹{X ¡ ¡ki@¹j X + ¡jk@¹{X = 0: Let X~ be a vertical in¯nitesimal a±ne transformation in T (Mn). Then X~ has components 0 h¹ ¹ with respect to the induced coordinates. Thus, from (13), we have @¹@¹{X~ = 0, µX~ h¶ j i.e., h¹ h i h (14) X~ = Ci y + D ; h h h where Ci and D depend only on the variables x . Since X~ is a vector ¯eld in T (Mn), h i h 1 1 C = Ci @h­dx and D = D @h are de¯ned elements of =1(Mn) and =0(Mn), respectively. H 2.1. Theorem. If X~ is a vertical in¯nitesimal a±ne transformation of T (Mn) with r, then r ­ h @ 2 =1 ­ k h (a) LD + C(D R) = 0, D = @ @xh , D 0(Mn) and C(D R) = D Rkji. (b) C is parallel with respect to r, i.e., rC = 0. 1 (c) C(T (Y; Z)) = T (CY; Z) = T (Y; CZ), for any Y; Z 2 =0(Mn), where T denotes the torsion tensor of r, i.e. T is a pure tensor with respect to C. 1 (d) C(rZ T )(Y; W ) = (rCZ T )(Y; W ), for any Y; Z; W 2 =0(Mn). (e) Conversely, if C and D satisfy the conditions (a), (b), (c) and (d) then the vector ¯eld @ X~ = (Chyi + Dh) = γC +v D i @yh H is an in¯nitesimal a±ne transformation of T (Mn) with connection r, where 0 γC is a vertical vector ¯eld which has components of the form γC = i h . µy Ci ¶ Proof. (a). Substituting (14) and X~ h = 0 in (10), we have h k h k h k h h k h k k h k h (15) @j @iCs +Cs @k¡ji ¡¡ji@kCs ¡@s¡jiCk +¡ki@j Cs +¡jk@iCs ¡Cs Rkji +RsjiCk = 0; and h k h k h h k h k k h (16) @j @iD + D @k¡ji ¡ ¡ji@kD + ¡ki@j D + ¡jk@iD ¡ D Rkji = 0; 158 A. Gezer, K. Akbulut which means that LDr + C(D ­ R) = 0. (b). Substituting (14) and X~ h = 0 in (12), we obtain h k h h k (17) @iCj ¡ ¡jiCk + ¡kiCj = 0: Substituting (14) and X~ h = 0 in (11), we obtain h k h h k (18) @j Ci ¡ ¡jiCk + ¡jkCi = 0; which means that C is parallel in Mn. (c). Interchanging i and j in (18), we have h k h h k @iCj ¡ ¡ij Ck + ¡ikCj = 0; and subtracting the resulting equation from (17), we have k h h k (19) TjiCk = TkiCj ; that is, (20) C(T (Y; Z)) = T (CY; Z) 1 for any Y; Z 2 =0(Mn).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us