The Divergence Theorem Cartan's Formula II. for Any Smooth Vector

The Divergence Theorem Cartan's Formula II. for Any Smooth Vector

The Divergence Theorem Cartan’s Formula II. For any smooth vector field X and any smooth differential form ω, LX = iX d + diX . Lemma. Let x : U → Rn be a positively oriented chart on (M,G), with volume j ∂ form vM , and X = Pj X ∂xj . Then, we have U √ 1 n ∂( gXj) L v = di v = √ X , X M X M g ∂xj j=1 and √ 1 n ∂( gXj ) tr DX = √ X . g ∂xj j=1 Proof. (i) We have √ 1 n LX vM =diX vM = d(iX gdx ∧···∧dx ) n √ =dX(−1)j−1 gXjdx1 ∧···∧dxj ∧···∧dxn d j=1 n √ = X(−1)j−1d( gXj) ∧ dx1 ∧···∧dxj ∧···∧dxn d j=1 √ n ∂( gXj ) = X dx1 ∧···∧dxn ∂xj j=1 √ 1 n ∂( gXj ) =√ X v . g ∂xj M j=1 ∂X` ` k ∂ (ii) We have D∂/∂xj X = P` ∂xj + Pk Γkj X ∂x` , which implies ∂X` tr DX = X + X Γ` Xk. ∂x` k` ` k Since 1 Γ` = X g`r{∂ g + ∂ g − ∂ g } k` 2 k `r ` kr r k` r,` 1 == X g`r∂ g 2 k `r r,` √ 1 ∂ g ∂ g = k = √k , 2 g g √ √ ∂X` X` ∂ g 1 n ∂( gXj ) tr DX = X + √ k } = √ X . ∂x` g ∂x` g ∂xj ` j=1 Typeset by AMS-TEX 1 2 Corollary. Let (M,g) be an oriented Riemannian manifold. Then, for any X ∈ Γ(TM), d(iX dvg)=tr DX =(div X)dvg. Stokes’ Theorem. Let M be a smooth, oriented n-dimensional manifold with boundary. Let ω be a compactly supported smooth (n − 1)-form on M. Then Z dω = Z ω. M ∂M Theorem 1. Let (M,g) be an oriented Riemannian manifold. For any compactly supported X ∈ Γ(TM) and nowhere vanishing ω ∈An(M), we have Z LX ω =0; M Z Z LX dvg = iX ω, Ω ∂Ω for any Ω ⊂ M with smooth boundary. the Divergence Theorem. Let (M,g) be an oriented Riemannian manifold. Let ν be a unit normal vector field along ∂M. Set dvge = iν dvg. For any X ∈ Γ(TM), we have, Z Z div Xdvg = g(X, ν) dvge. M ∂M Proof. By Stokes’ theorem, we have Z Z Z (div X)dvg = d(iX dvg)= iX dvg. M M ∂M If (νx,e2, ··· ,en) is an oriented orthonormal basis of TxM for x ∈ ∂M, then (iX dvg)x(e2, ··· ,en)=(dvg )(X, e2, ··· ,en) =gx(X, ν)(dvg)x(νx,e2, ··· ,en) =gx(X, ν)(iν dvg)x(e2, ··· ,en). 3 Proposition 2.61. Let (M,g) be a Riemannian manifold and X ∈ Γ(TM), Xi ∈ Γ(TM), 1 ≤ i ≤ p. Then 0 (i) For S ∈ Γ(Tp M), p (LX S)(X1, ··· ,Xp)=(DX S)(X1, ··· ,Xp)+X S(X1, ··· ,Xi−1,DXi X, ··· ,Xp). i=1 (ii) For any differential form of degree p, p+1 dα(X0,X1, ··· ,Xp)=X(DXi α)(X1, ··· ,Xi−1,X0,Xi+1, ··· ,Xp). i=0 Proof. (i) follows from substituting (1) X(S(X1, ··· ,Xp)) = (DX S)(X1, ··· ,Xp) p − X S(X1, ··· ,Xi−1,DX Xi,Xi+1, ··· ,Xp) i=1 into the identity (LX S)(X1, ··· ,Xp)=X(S(X1, ··· ,Xp)) p + X S(X1, ··· ,Xi−1, [X, Xi],Xi+1, ··· ,Xp). i=1 (ii) We have p i dα(X0,X1, ··· ,Xp)=X(−1) Xiα(X0,X1, ··· , Xi, ··· ,Xp) b i=0 (2) + X (−1)i+j+1α([X ,X ],X , ··· , X , ··· , X , ··· ,X ). i j 0 bi bj p 0≤i≤j≤p Substituting (1) into (2), we obtain p dα(X ,X , ··· ,X )=X(−1)i(D α)(X ,X , ··· , X , ··· ,X ) 0 1 p Xi 0 1 bi p i=0 + X(−1)i+1α(X , ··· , X , ··· ,D X , ··· ,X ) 0 bi Xi j p i<j + X(−1)i+1α(X , ··· ,D X , ··· , X , ··· ,,X ) 0 Xi j bi p i>j + X (−1)i+j+1α([X ,X ],X , ··· , X , ··· , X , ··· ,X ) i j 0 bi bj p 0≤i≤j≤p p = X(−1)i(D α)(X ,X , ··· , X , ··· ,X ). Xi 0 1 bi p i=0 4 Lemma 4.8. Let (M,g) be an oriented Riemannian manifold with volume form vM . For any X ∈ Γ(TM), d(iX vM )=−(tr DX)vM . Proof. For any x ∈ M, take any orthonormal basis (e1, ··· ,en)ofTxM. We have (Dej (iX vM ))(e2, ··· ,ej−1,e1,ej+1, ··· ,en) (3) j−1 =(−1) (Dej (iX vM ))(e1,e2, ··· ,ej−1, ej ,ej+1, ··· ,en) b p j−1 =(−1) [ej (iX vM (e1, ··· , ej, ··· ,en)) − X iX vM (e1, ··· ,Dej ei, ··· , ej , ··· ,en)] b i=2 b p j−1 =(−1) [ej (vM (X, e1, ··· ,en)) − X vM (X, e1, ··· ,Dej ei, ··· , ej , ··· ,en)], i=2 b in which ej (vM (X, e1, ··· , ej , ··· ,en)) =(Dej vM )(X, e1, ··· , ej , ··· ,en) b b + vM (Dej X, e1, ··· , ej , ··· ,en) p b (4) + X vM (X, e1, ··· , ej, ··· ,Dej ei, ··· ,en). i=2 b Substituting (4) into (3) and using the fact that Dvg = 0, we obtain j−1 (Dej (iX vM ))(e2, ··· ,ej−1,e1,ej+1, ··· ,en)=(−1) vM (Dej X, e1, ··· , ej , ··· ,en). b Then (1) gives n (d(iX vg))(e1, ··· ,en)=X Dej (iX vM )(e2, ··· ,ej−1,e1,ej+1, ··· ,en) j=2 j−1 =(−1) vM (Dej X, e1, ··· , ej , ··· ,en) n b = X vM (e1, ··· ,Dei X, ··· ,en) i=1 n = X g(ei,Dei X)vM (e1, ··· ,en). i=1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us