Channel Measurement and Modeling in Complex Environments “Engineering the future” Lei Zhang School of Telecommunications Systems and Engineering Technical University of Madrid ETSIST-UPM Athesissubmittedforthedegreeof Doctor of Philosophy Madrid, September 2016 Doctorado en Ingenier´ıa de Sistemas y Servicios para la Sociedad de la Informaci´on Tesis Doctoral T´ıtulo Channel Measurement and Modeling in Complex Environments Autor Lei Zhang Director Dr. C´esar Briso Rodr´ıguez V ◦B◦. Tribunal Presidente Dr. Jos´eIgnacio Alonso Montes Vocal Dr. Luis Castedo Ribas Vocal Dr. Ke Guan Vocal Dr. Miguel Angel´ G´omez Laso Secretario Dr. Juan Moreno Garc´ıa-Loygorri Suplente Suplente Lugar y E.T.S.I y Sistemas de Telecomunicaci´on fecha de lectura de Septiembre de 2016 Calificaci´on El Presidente La secretaria Los vocales Tesis Doctoral para la obtenci´on del t´ıtulo de Doctor por la Universidad Polit´ecnica de Madrid 2016 To my beloved family. Acknowledgements This dissertation is not only a milestone of my life but also the result of many experiences I have encountered in Madrid from dozens of remarkable individuals who I also wish to acknowledge. First and foremost, I would like to express my deepest gratitude to my supervisor, Prof. C´esar Briso Rodr´ıguez, who offered his continuous advice and encouragement throughout my Ph.D. study. I have no way to repay the systematic guidance and great effort he put into training me in the scientific field. A very special thanks to Prof. David W. Matolak, who gave me lots of valuable suggestions during my research stay at the University of South Carolina. I really admired his meticulous attitude on research and enjoyed every discussion with him. Many thanks to our partners in the cooperation institutes (BJTU, UDC, TONGJI): Prof. Ke Guan, Qi Wang, Prof. Jos´eA. Garc´ıa-Naya, Jos´eRodr´ıguez-Pi˜neiro, and Xuesong Cai. Thanks to my colleagues in GRC: Dr. Jean Rapha¨el Olivier Fernan- dez, Sergio P´erez Jim´enez, David Alonso S´aez, etc. It would have been a dreary journey without my folks in Campus Sur: Daniel G´omez Lobo Garca, Dr. Yuanjiang Huang, Shengjing Sun, Yongjun Pan, Yu Chen, Xin Li,etc. Last, but certainly not least, I would like to give my most sincere thanks to my parents, for their many years of selfless love and patience support. Thanks to my wife Qin and our soon-to-be-born baby, who have given me boundless strength and great courage. I love you beyond words. Lei Zhang Madrid, July 2016 iii Abstract The fast development of new technologies such as high-speed rail (HSR) with high reliability, safety and capacity promote the evolution process of corresponding dedicated wireless communication system from narrowband to broadband. The main challenges for the communication system design and network planning in complex environments include: the enclosed space in underground systems; the rapidly time-varying channel in high mobility scenarios, a variety of complex structures in composite scenarios, such as stations, tunnels, cuttings, viaducts, etc.; and the extra losses caused by the vehicle’s structure. Thus, Wireless propagation characteristics in com- plex scenarios are of importance for the design and implement reliable and efficient communications in modern communication systems. This dissertation analyzes the key challenges for wireless channel char- acterization in the complex environments. Then a series of propagation measurements conducted in real complex scenarios are presented as the test cases. For the underground system, two typical types of curved tun- nels are firstly investigated by the mean of narrowband measurements. The statistical characterization of the path loss exponent, shadow fading distribution, autocorrelation, and cross-correlation are parametrized and compared with different configurations. Furthermore, wideband measure- ment campaigns conducted in a modern subway system at 980 MHz and 2450 MHz are described in detail. The time dispersion is analyzed with the power delay profile in different regions. The principal parameters, such as mean power and root mean square (RMS) delay are extracted to establish region-based tapped delay line (TDL) models. Moreover, the electromagnetic reverberation in underground system is characterized by the reverberation time, absorption coefficient, and quality factor (Q) as the functions of distance for the first time. Also, the transition distance between station and tunnel is modeled based on the Q versus distance. iv For high mobility scenarios, a series of wideband measurements carried out in an HSR composite scenario are described. The PDPs are also ana- lyzed to generate the TDL channel models in different regions. Then the corresponding 3D ray-tracing simulation is employed to achieve a deter- ministic channel model for validating the measurement and also providing the frequency dispersion. The small-scale fading characteristics and the effect of Doppler shift are statistically analyzed. Propagation mechanism inside the mass transit system is another “hot” topic. The study of the outdoor-to-indoor and indoor-to-indoor radio propagation characteristics inside trains is also conducted in this dissertation. Based on the measure- ments of actual LTE coverage receiving by external and internal antennas, the extra loss caused by the train’s physical structure is estimated. Also, the propagation measurements inside the high-speed train (HST) are pre- sented. Results show the waveguiding effects inside the HST carriage. The log-distance path loss models are parameterized, and small-scale fading statistics for various propagation links are proposed and compared. The extensive analysis and discussions made in this dissertation are expected to reflect the propagation mechanism behind the observations in complex environments. The quantitative results and channel models are useful to realize the high-performance wireless communication system in complex scenarios. v Resumen El r´apido desarrollo de la alta velocidad ferroviaria (HSR) con una alta fia- bilidad, seguridad y capacidad est´ademandando actualmente la evoluci´on de los sistemas de telecomunicaciones inal´ambricas empleados en este en- torno hacia sistemas banda ancha y alta capacidad. Por ello, las comuni- caciones con los trenes de alta velocidad son uno de los principales casos de estudio para el desarrollo y dise˜no de sistemas de comunicaciones en en- tornos complejos. Este entorno incluye: espacios cerrados en los sistemas sub-terraneos; canal r´apidamente variable en el tiempo en los escenarios de alta movilidad, variedad de estructuras complejas en escenarios com- puestos como estaciones, t´uneles, trincheras, viaductos, etc., y las p´erdidas adicionales causadas por la estructura del veh´ıculo. Por lo tanto, el mod- elado de las caracter´ısticas de propagaci´onen estos escenarios es de gran importancia para el dise˜no e implementaci´onde sistemas de comunicaciones fiables y requeridas en los sistemas de comunicaci´onmodernos. Esta tesis analiza los principales retos para la caracterizaci´onde la propa- gaci´onen entornos complejos principalmente de ferrocarriles de alta ve- locidad y metropolitanos. Para ello se han realizado multitud de medidas de propagaci´onrealizados en escenarios complejos reales, las cuales se han analizado y empleado para el modelado del canal. En los ferrocarriles metropolitanos se han estudiado en detalle distintos tipos de t´uneles cur- vos. El estudio se realiza primero analizando el comportamiento en banda estrecha, la caracterizaci´onestad´ıstica del exponente de perdidas de propa- gaci´on, la distribuci´onestad´ıstica y sus par´ametros de autocorrelaci´ony de correlaci´oncruzada. Estos par´ametros se comparan con diferentes con- figuraciones de antenas y en diferentes entornos. Por otra parte, se ha realizado tambi´en un modelado de la propagaci´onen banda ancha basado en la realizaci´onde varias campa˜nas de medida realizadas por medio de un sistema de sonda de canal empleado en entornos de metro a 980 MHz y vi 2.450 MHz. De estas medidas se obtiene el perfil y retardo de potencia en diferentes regiones. Los principales par´ametros, como la potencia media y retardo (RMS) se extraen para establecer modelos de l´ınea de retardo con tomas basada en regiones (TDL). Otro aspecto novedoso es la aplicaci´on de la teor´ıa de la reverberaci´onelectromagn´etica en radiocomunicaciones en entornos cerrados. En este caso se aplica a los sistema ferroviarios sub- terr´aneos donde el entorno se caracteriza en primer lugar con el tiempo de reverberaci´on, coeficiente de absorci´on, y el factor de calidad (Q) . Ade- mas,esta teor´ıa se ha aplicado tambi´en a la distancia de transici´onentre la estaci´ony el t´unel, modelando en base a el factor de calidad Q frente a la distancia. Para los escenarios de alta movilidad, se describen una serie de mediciones de banda ancha realizadas en un escenario compuesto HSR. Los resultados son empleados para modelar la propagaci´onen diferentes regiones. Estos resultados se han aplicado a un modelo de simulaci´onde trazado de rayos 3D para lograr un modelo de canal determinista para la validaci´onde la medidas y proporcionando tambi´en la dispersi´onde fre- cuencia. Las caracter´ısticas de desvanecimiento de peque˜na escala y el efecto del desplazamiento Doppler, el cual se analizan estad´ısticamente. Otros novedosos puntos de estudio son el mecanismo de propagaci´onen el interior de los sistema de transporte p´ublico y el estudio de la propa- gaci´onveh´ıculo a veh´ıculo entre trenes. Para ello se realizan medidas de la cobertura de sistemas 4G LTE real la recepci´onpor antenas externas e internas, la perdida adicional causada por la estructura f´ısica del tren se estima. Ademas, se presenta la medici´onde propagaci´onen el interior del tren de alta velocidad (TAV). los resultados muestran los efectos de gua de ondas dentro del carro HST. el camino de la distancia de registro modelos de perdida son parametrizados, y se proponen y se comparan las estad´ısticas de desvanecimiento de peque˜na escala para varios enlaces de propagaci´on.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages204 Page
-
File Size-