IAEA Nuclear Energy Series No. NF-T-4.5 Basic Technical Features to Principles Enhance Proliferation Resistance of Nuclear Objectives Energy Systems Guides Technical Reports INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–106210–9 ISSN 1995–7807 P1464_cover.indd 1 2010-08-24 13:48:24 IAEA NUCLEAR ENERGY SERIES PUBLICATIONS STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES Under the terms of Article III.A. and VIII.C. of its Statute, the IAEA is authorized to foster the exchange of scientific and technical information on the peaceful uses of atomic energy. The publications in the IAEA Nuclear Energy Series provide information in the areas of nuclear power, nuclear fuel cycle, radioactive waste management and decommissioning, and on general issues that are relevant to all of the above mentioned areas. The structure of the IAEA Nuclear Energy Series comprises three levels: 1 — Basic Principles and Objectives; 2 — Guides; and 3 — Reports. The Nuclear Energy Basic Principles publication describes the rationale and vision for the peaceful uses of nuclear energy. Nuclear Energy Series Objectives publications explain the expectations to be met in various areas at different stages of implementation. Nuclear Energy Series Guides provide high level guidance on how to achieve the objectives related to the various topics and areas involving the peaceful uses of nuclear energy. Nuclear Energy Series Technical Reports provide additional, more detailed, information on activities related to the various areas dealt with in the IAEA Nuclear Energy Series. The IAEA Nuclear Energy Series publications are coded as follows: NG — general; NP — nuclear power; NF — nuclear fuel; NW — radioactive waste management and decommissioning. In addition, the publications are available in English on the IAEA’s Internet site: http://www.iaea.org/Publications/index.html For further information, please contact the IAEA at P.O. Box 100, Wagramer Strasse 5, 1400 Vienna, Austria. All users of the IAEA Nuclear Energy Series publications are invited to inform the IAEA of experience in their use for the purpose of ensuring that they continue to meet user needs. Information may be provided via the IAEA Internet site, by post, at the address given above, or by email to [email protected]. UUntitled-1ntitled-1 2 22007-12-13007-12-13 115:21:375:21:37 TECHNICAL FEATURES TO ENHANCE PROLIFERATION RESISTANCE OF NUCLEAR ENERGY SYSTEMS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NORWAY ALBANIA GREECE OMAN ALGERIA GUATEMALA PAKISTAN ANGOLA HAITI PALAU ARGENTINA HOLY SEE PANAMA ARMENIA HONDURAS PARAGUAY AUSTRALIA HUNGARY PERU AUSTRIA ICELAND PHILIPPINES AZERBAIJAN INDIA POLAND BAHRAIN INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ REPUBLIC OF MOLDOVA BELGIUM IRELAND ROMANIA BELIZE ISRAEL RUSSIAN FEDERATION BENIN ITALY SAUDI ARABIA BOLIVIA JAMAICA BOSNIA AND HERZEGOVINA JAPAN SENEGAL BOTSWANA JORDAN SERBIA BRAZIL KAZAKHSTAN SEYCHELLES BULGARIA KENYA SIERRA LEONE BURKINA FASO KOREA, REPUBLIC OF SINGAPORE BURUNDI KUWAIT SLOVAKIA CAMBODIA KYRGYZSTAN SLOVENIA CAMEROON LATVIA SOUTH AFRICA CANADA LEBANON SPAIN CENTRAL AFRICAN LESOTHO SRI LANKA REPUBLIC LIBERIA SUDAN CHAD LIBYAN ARAB JAMAHIRIYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI THE FORMER YUGOSLAV CÔTE DIVOIRE MALAYSIA REPUBLIC OF MACEDONIA CROATIA MALI TUNISIA CUBA MALTA TURKEY CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO GREAT BRITAIN AND DOMINICAN REPUBLIC MONGOLIA NORTHERN IRELAND ECUADOR MONTENEGRO EGYPT MOROCCO UNITED REPUBLIC EL SALVADOR MOZAMBIQUE OF TANZANIA ERITREA MYANMAR UNITED STATES OF AMERICA ESTONIA NAMIBIA URUGUAY ETHIOPIA NEPAL UZBEKISTAN FINLAND NETHERLANDS VENEZUELA FRANCE NEW ZEALAND VIETNAM GABON NICARAGUA YEMEN GEORGIA NIGER ZAMBIA GERMANY NIGERIA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR ENERGY SERIES No. NF-T-4.5 TECHNICAL FEATURES TO ENHANCE PROLIFERATION RESISTANCE OF NUCLEAR ENERGY SYSTEMS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2010 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2010 Printed by the IAEA in Austria June 2010 STI/PUB/1464 IAEA Library Cataloguing in Publication Data Technical features to enhance proliferation resistance of nuclear energy systems. — Vienna : International Atomic Energy Agency, 2010. p. ; 29 cm. — (IAEA nuclear energy series, ISSN 1995–7807 ; no. NF-T-4.5) STI/PUB/1464 ISBN 978–92–0–106210–9 Includes bibliographical references. 1. Nuclear nonproliferation — Safety measures. 2 power plants – Human factors — Safety measures. I. Atomic Energy Agency. II. Series. IAEAL 10–00640 FOREWORD It is generally accepted that proliferation resistance is an essential issue for the continued development and sustainability of nuclear energy. Several comprehensive assessment activities on the proliferation resistance of the nuclear fuel cycle have previously been completed, notably the International Nuclear Fuel Cycle Evaluation (INFCE) carried out under the auspices of the IAEA, and the Non-proliferation Alternative Systems Assessment Program (NASAP) review carried out by the USA. There have been, however, relatively few comprehensive treatments of the issue following these efforts in the 1970s. However, interest in and concern about this issue have increased recently, particularly because of greater interest in innovative nuclear fuel cycles and systems. In 2000, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and the US Department of Energy initiated the Generation IV International Forum (GIF). These projects are aimed at the selection and development of concepts of innovative nuclear energy systems and fuel cycles. Proliferation resistance is one of the fundamental considerations for both projects. In this context, the IAEA in 2001 initiated a study entitled ‘Technical Aspects of Increasing Proliferation Resistance of the Nuclear Fuel Cycle’. This task is not intended as an effort to assess the merits of a particular fuel cycle system for the future, but to describe a qualitative framework for an examination of the proliferation resistance provided by the intrinsic features of an innovative nuclear energy system and fuel cycle. This task also seeks to provide a high level survey of a variety of innovative nuclear energy systems and fuel cycles with respect to that framework. The concept of proliferation resistance is considered in terms of intrinsic features and extrinsic measures. The intrinsic features, sometimes referred to as the physical/technical aspects, are those features that result from the technical design of innovative nuclear energy system and fuel cycles, including those that facilitate the implementation of extrinsic measures. The extrinsic measures, also referred to as institutional aspects, are those measures that result from the decisions and undertakings of States related to nuclear energy systems. This publication focuses on the intrinsic features of proliferation resistance. In addition to the examples included in the report, an accompanying CD-ROM contains more detailed examples. The IAEA expressed its thanks to all those who contributed to this publication. The IAEA officers responsible for this publication were K. Kawabata, Y. Hosokawa, H. Chayama and S. Sakaguchi of the Division of Nuclear Fuel Cycle and Waste Technology. EDITORIAL NOTE This report has been edited by the editorial staff of the IAEA to the extent considered necessary for the reader’s assistance. It does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages55 Page
-
File Size-