Introduction to the Ads/CFT Correspondence Horatiu Nastase

Introduction to the Ads/CFT Correspondence Horatiu Nastase

Introduction to the AdS/CFT correspondence Horatiu Nastase IFT-UNESP Strings at Dunes, Natal July 2016 1 Plan: •Lecture 1. Conformal field theories, gauge theories and nonperturbative issues •Lecture 2. Strings and Anti-de Sitter space •Lecture 3. The AdS/CFT map and gauge/gravity duality 2 Lecture 1 Conformal field theories, gauge theories and nonperturbative issues 3 1. Conformal field theories: relativistic . 0 •Classical scale invariance: xµ ! xµ = λxµ. •QM scale invariance ! usually conformal invariance. β fct. =0. •Conformal transformation of flat space: x0(x) such that 2 0 0µ −2 µ ds = dxµdx = [Ω(x)] dxµdx : •Is an invariance of flat space under transformations. •Conformal invariance is not general coord. invariance ! in 2d, $ 9 of generalization that is diff. and Weyl invariant Z Z 2 2 d z(@µϕ) = dzdz@ϕ¯ @ϕ¯ inv: Z Z d2z m2ϕ2 = dzdz¯ m2ϕ2 4 •So: conformal transf. = generalization of scale transf. of flat .space that change distance between points by local factor. •Infinitesimal: 0 xµ = xµ + vµ(x); Ω(x) = 1 − σν(x) 1 @µvν + @νvµ = 2σνδµν ) σν = @ · v d •d = 2 Euclidean: ds2 = dzdz¯ ) Most general solution is holo- morphic transformation z0 = f(z), 0 0 0 0 − ds2 = dz dz¯ = f (z)f¯(¯z)dzdz¯ ≡ [Ω(z; z¯)] 2dzdz¯ •d > 2: most general solution is 2 vµ(x) = aµ + !µνxν + λxµ + bµx − 2xµb · x σν(x) = λ − 2b · x 5 •Pµ $ aµ;Jµν $ !µν: ISO(d − 1; 1) (Poincar´e). Also D $ λ dilatation; Kµ $ bµ special conformal . •Form generators of SO(2; d) 0 1 ¯ ¯ Jµν Jµ,d+1 Jµ,d+2 B ¯ C JMN = @−Jν;d+1 0 D A ¯ −Jν;d+2 −D 0 Kµ − Pµ Kµ + Pµ J¯ = ; J¯ = ; J¯ = 0: µ,d+1 2 µ,d+2 2 d+1;d+2 •Symmetry group of AdSd+1 : CFT on Minkd = gravity in AdSd+1? 0 2 2 •Obs.: Inversion I : xµ = xµ=x ) Ω(x) = x is conformal also. I & rotation & translation ) all finite conformal: e.g. xµ ! λxµ and special conformal xµ + bµx2 µ ! x 2 2 1 + 2xνbν + b x 6 d=2 conformal fields and correlators •. ! 0 Covariant GR tensor: under zi zi(z), ~z = (z1; z2), 0j 0j 0 @z 1 @z n Ti :::i (z1; z2) = Tj :::j (z1; z2) ::: 1 n 1 n @zi1 @zin is generalized to primary field (tensor operator) of CFT, of dimensions (h; ~h) ! ! 0 h 0 ~h (h;~h) 0 dz dz¯ ϕ (z; z¯) ≡ T ¯ ¯ = T z:::zz:::z z:::zz:::¯ z¯ dz dz¯ •Operator product expansion (OPE) ! in any QFT, X k Oi(xi)Oj(xj) = C ij(xi − xj)Ok(xj) k •In CFT, conformal invariance gives for n-point correlators ( ) Cδ X Ck x + x hO (x )O (x ) = ij ) hO (x )O (x ):::i = ij hO i j :::i i i j j 2∆ i i j j ∆ +∆ −∆ k jxi − xjj i jxi − xjj i j k 2 k 7 •Know ALL OPEs ! can solve CFT for correlators. •Symmetry algebra is infinite dimensional. Energy momentum tensor (not primary!) decomposes as . X X Lm L~m Tzz(z) = ; T~ (¯z) = m+2 z¯z¯ ¯m+2 m2Z z m2Z z Then we have the Virasoro algebra c 3 [Lm;Ln] = (m − n)L + (m − m)δ − m+n 12 m; n y and idem for L~m. Here Lm = L−m and c=central charge. •fL0;L1;L−1g form a closed subalgebra: Sl(2; C). •Representations: given by "highest weight state" jhi. In CFT, h 9 operator-state correspondence: jhi = limz!0 ϕ (z)j0i: primary field. L−n: gives "descendants": L0jhi = hjhi; Lnjhi = 0;L0(L−njhi) = (h + n)(L−njhi) 8 d > 2 conformal fields and correlators •Eigenfcts. of D with eigenv.−i∆ (like L0 and "energy" of state) 0 ∆ . ϕ(x) ! ϕ (x) = λ ϕ(λx): y Then Kµ ∼ Ln, Pµ ∼ L−n: a and a : create representations [D; Pµ] = −iPµ ) D(Pµjϕ) = −i(∆ + 1)(Pµϕ) [D; Kµ] = +iKµ ) D(Kµjϕ) = −i(∆ − 1)(Kµϕ) •Inversion generates conf. transf. Defined by orthog. matrix 0µ @x 0 2 Rµν(x) = Ω(x) ) for x = xµ=x ; @xν µ 2xµxν Rµν(x) ≡ Iµν(x) = δµν − x2 •For correlators, 3 point functions of scalars. C hO (x)O (y)O (z)i = ijk i j k ∆ +∆ −∆ ∆ +∆ −∆ ∆ +∆ −∆ jx − yj i j k jy − zj j k i jz − xj k i j amd currents ! analyze properties under inversion ab δ Iµν(x − y) hJa(x)Jb(y)i = C µ ν jx − yj2(d−1) 9 •QCD at high energies ' conformal. •Condensed matter systems: Euclidean CFT appears near criti- cal point. Correlation length ! 1. ( )−α ( )−γ ( )−ν T − Tc T − Tc m T − Tc C / ; χm / ; ξ / ! 1 Tc Tc Tc •Near Tc : conformal field theory: correlation functions defined by X lat lat lat −1 lat lat −βH(fsg) hϕ1 (r1)ϕ2 (r2)...ϕn (rn)i = Z ϕ1 (r1)...ϕn (rn)ie fsg and take scaling limit a ! 0 with ξ fixed, such that 0 1 Yn @ 1 A lat lat lat hϕ1(r1)...ϕn(rn)i = lim hϕ1 (r1)ϕ2 (r2)...ϕn (rn)i a!0 ∆i i=1 a •So: critical point: relativistic. 10 2. Conformal field theories: non-relativistic •Condensed matter ! 9 also nonrelativistic scaling near "Lifshitz . points": t ! λzt; ~x ! λ~x, z= dynamical critical exponent. e.g. Lifshitz field theory with z = 2, Z d 2 2 2 2 L = d xdt[(@tϕ) − k (r~ ϕ) ] •Lifshitz algebra generated by Poincar´egenerators i j H = −i@t; Pi = −i@i; Mij = −i(x @j − x @i) and generator of scaling transformations i D = −i(zt@t + x @i) •Algebra is [D; H] = izH; [D; Pi] = iPi; [D; Mij] = 0; [Pi;Pj] = 0; i − j [Mij;Pk] = i(δkPj δkPi); [Mij;Mkl] = i[δikMjl − δjkMil − δilMjk + δjlMik] 11 •Larger algebra: conformal Galilean algebra, e.g. cold atoms and fermions at unitarity. •. 9 "Galilean boosts" (nonrelativistic version of boosts) and con- served rest mass (particle number) N. •Represent them by introducing direction ξ. i D = −i(zt@t + x @i + (2 − z)ξ@ξ) i Ki = −i(x @ξ − t@i); N = −i@ξ and the rest, same. Then, algebra = one before, plus [D; Ki] = (1 − z)iKi [D; N] = (2 − z)iN; [D; H] = ziH; [D; Pi] = iPi [Ki;Pj] = iδijN; [Ki;H] = −iPi; [Ki;Mij] = i(δjkKi − δikKj) and rest zero. For z = 2, 9 special conformal generator C for Schr¨odingeralgebra [C; D] = +2iC; [C; H] = −iD; [C; Pi] = −iKi; [C; Mij] = [C; Ki] = 0: 12 3. Gauge theory a •9 gauge field Aµ, with field strength . 1 µ ν µ a F = dA + gA ^ A; F = Fµνdx ^ dx ;A = Aµdx ;Aµ = A Ta 2 µ c where [Ta;Tb] = fab Tc and gauge invariance a a a a b c δAµ = (Dµϵ) = @µϵ + gf bcAµϵ •The field strength transforms covariantly under a finite transf. a U(x) = egλ (x)Ta; ϵa ! λa 0 −1 Fµν = U (x)FµνU(x) •Couple to fermions and scalars. In Euclidean space, Z E E 4 ¯ ∗ µ S = SA + d x[ (D= + m) + (Dµϕ) D ϕ] µ where D= ≡ Dµγ and − ) a a Dµ = @µ ieAµ (Dµ)ijδij@µ + g(TR)ijAµ(x): 13 •Green's functions (correlation functions) from partition function = generating functional (in Euclidean space) Z R −S [ϕ]+i ddxJ(x)ϕ(x) ZE[J] = Dϕe E . by δ δ (E) (E) Gn (x1; :::; xn) = ::: Z [J] ZδJ(x1) δJ(xn) J=0 −S [ϕ] = Dϕe E ϕ(x1)...ϕ(xn) •Can be generalized to existence of composite operators, e.g. gauge invariant operators in gauge theory O(x), Z R −S + ddxO(x)J(x) ZO[J] = Dϕe E giving correlation functions δ δ hO O i (x1)::: (xn) = ::: ZO[J] ZδJ(x1) δJ(xn) J=0 −S [Φ] = Dϕe E O(x1):::O(xn) 14 •Noether theorem: (global) symmetry $ current L a,µ @ a i j j = (T ) jϕ @(@µϕ) . µ,a 0 Classically, @µj = 0. Quantum mechanically, if Dϕ = Dϕ , Z µ a −SE[ϕ] µ a h@ jµi = 0 = Dϕe @ jµ(x) = 0 •If Dϕ =6 Dϕ0 ! 9 anomaly. •Chiral anomaly: (x) ! eiαγ5 (x); ¯(x) ! eiαγ5 ¯(x), 5 ¯ jµ = γµγ5 ) e 1 h@µj5i = (2d) ϵµνF ext µ 4π 2 µν e2 1 = (4d) ϵµνρσF extF ext 16π2 2 µν ρσ • i a a i j ) Global nonabelian: δ = ϵ (T ) j a i a 1 + γ5 j j = ¯ γµ(T ) : µ ij 2 15 4. Nonperturbative issues . •Strong coupling: difficult. In particular, correlators (n-point functions). Also for currents n Z R δ − µ h a1µa( ) anµn( )i = D(fields) SE+ j Aµ j x1 :::j xn a1 an e δAµ1...δAµn(xn) •QCD: conformal at E ≫ ΛQCD. Also, toy model, N = 4 SYM a aI a[IJ] (4 susies): fAµ; ;X , I;J = 1; :::; 4. SU(4) = SO(6) global symmetry. Is exactly conformal (β = 0). From KK dimensional reduction of N = 1 SYM, Z [ ] 1 1 S = d10xTr − F F MN − ¯λΓM D λ 4 MN 2 M •CFT easy to define in Euclidean space. But Minkowski? Sub- tle. 16 •Instantons: nonperturbartive Euclidean solution. Z Z " # . 1 1 1 S = d4x(F a )2 = d4x F a ∗ F aµν + (F a − ∗F a )2 4g2 µν 4g2 µν 8g2 µν µν a a •Only in Euclidean space Fµν = ∗Fµν has real solutions, and 2 2 then S = Sinst: = 8π =g n. Solution a 2 η (x − x )ν a = µν i Aµ 2 2 g g(x − xi) + ρ a a aij a a a − a where ηµν='t Hooft symbol, ηij = ϵ , ηi4 = δi , ϵ4i = δi .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    55 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us