‣ LP Duality ‣ Strong Duality Theorem ‣ Bonus Proof of LP Duality

‣ LP Duality ‣ Strong Duality Theorem ‣ Bonus Proof of LP Duality

LINEAR PROGRAMMING II LINEAR PROGRAMMING II ‣ LP duality ‣ LP duality ‣ strong duality theorem ‣ Strong duality theorem ‣ bonus proof of LP duality ‣ Bonus proof of LP duality ‣ applications ‣ Applications Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM LP duality LP duality Primal problem. Primal problem. (P) max 13A + 23B (P) max 13A + 23B s. t. 5A + 15B ≤ 480 s. t. 5A + 15B ≤ 480 4A + 4B ≤ 160 4A + 4B ≤ 160 35A + 20B ≤ 1190 35A + 20B ≤ 1190 A , B ≥ 0 A , B ≥ 0 € € Goal. Find a lower bound on optimal value. Goal. Find an upper bound on optimal value. Easy. Any feasible solution provides one. Ex 1. Multiply 2nd inequality by 6: 24 A + 24 B ≤ 960. Ex 1. (A, B) = (34, 0) ⇒ z* ≥ 442 ⇒ z* = 13 A + 23 B ≤ 24 A + 24 B ≤ 960. Ex 2. (A, B) = (0, 32) ⇒ z* ≥ 736 objective function Ex 3. (A, B) = (7.5, 29.5) ⇒ z* ≥ 776 Ex 4. (A, B) = (12, 28) ⇒ z* ≥ 800 3 4 LP duality LP duality Primal problem. Primal problem. (P) max 13A + 23B (P) max 13A + 23B s. t. 5A + 15B ≤ 480 s. t. 5A + 15B ≤ 480 4A + 4B ≤ 160 4A + 4B ≤ 160 35A + 20B ≤ 1190 35A + 20B ≤ 1190 A , B ≥ 0 A , B ≥ 0 € € Goal. Find an upper bound on optimal value. Goal. Find an upper bound on optimal value. Ex 2. Add 2 times 1st inequality to 2nd inequality: ≤ Ex 2. Add 1 times 1st inequality to 2 times 2nd inequality: ≤ ⇒ z* = 13 A + 23 B ≤ 14 A + 34 B ≤ 1120. ⇒ z* = 13 A + 23 B ≤ 13 A + 23 B ≤ 800. Recall lower bound. (A, B) = (34, 0) ⇒ z* ≥ 442 Combine upper and lower bounds: z* = 800. 5 6 LP duality LP duality: economic interpretation Primal problem. Brewer: find optimal mix of beer and ale to maximize profits. (P) max 13A + 23B s. t. 5A + 15B ≤ 480 4A + 4B ≤ 160 (P) max 13A + 23B 35A + 20B ≤ 1190 s. t. 5A + 15B ≤ 480 A , B ≥ 0 4A + 4B ≤ 160 35A + 20B ≤ 1190 A , B ≥ 0 Idea. Add nonnegative combination€ (C, H, M) of the constraints s.t. 13A + 23B ≤ (5C + 4H + 35M ) A + (15C + 4H + 20M ) B € ≤ 480C +160H +1190M Entrepreneur: buy individual resources from brewer at min cost. ・C, H, M = unit price for corn, hops, malt. Dual problem. Find best such upper bound. Brewer won’t agree to sell resources if 5C + 4H + 35M < 13. € ・ (D) min 480C + 160H + 1190M (D) min 480C + 160H + 1190M s. t. 5C + 4H + 35M ≥ 13 s. t. 5C + 4H + 35M ≥ 13 15C + 4H + 20M ≥ 23 15C + 4H + 20M ≥ 23 C , H , M ≥ 0 C , H , M ≥ 0 7 8 € € LP duals Double dual Canonical form. Canonical form. (P) max cT x (D) min yT b (P) max cT x (D) min yT b s. t. Ax ≤ b s. t. AT y ≥ c s. t. Ax ≤ b s. t. AT y ≥ c x ≥ 0 y ≥ 0 x ≥ 0 y ≥ 0 € € € € Property. The dual of the dual is the primal. Pf. Rewrite (D) as a maximization problem in canonical form; take dual. (D') max − yT b (DD) min − cT z s. t. −AT y ≤ −c s. t. −(AT )T z ≥ −b y ≥ 0 z ≥ 0 9 € € 10 Taking duals LP dual recipe. LINEAR PROGRAMMING II ‣ LP duality Primal (P) maximize minimize Dual (D) ‣ strong duality theorem a x = bi yi unrestricted constraints a x ≤ b yi ≥ 0 variables ‣ bonus proof of LP duality a x ≥ b i yi ≤ 0 ‣ applications aTy ≥ c j xj ≥ 0 T a y ≤ cj variables x ≤ 0 constraints j aTy = c unrestricted j Pf. Rewrite LP in standard form and take dual. 11 LP strong duality LP weak duality Theorem. [Gale–Kuhn–Tucker 1951, Dantzig–von Neumann 1947] Theorem. For A ∈ ℜm×n, b ∈ ℜm, c ∈ ℜn, if (P) and (D) are nonempty, For A ∈ ℜm×n, b ∈ ℜm, c ∈ ℜn, if (P) and (D) are nonempty, then max = min. then max ≤ min. (P) max cT x (D) min yT b (P) max cT x (D) min yT b s. t. Ax ≤ b s. t. AT y ≥ c s. t. Ax ≤ b s. t. AT y ≥ c x ≥ 0 y ≥ 0 x ≥ 0 y ≥ 0 Generalizes:€ € € € ・Dilworth’s theorem. Pf. Suppose x ∈ ℜm is feasible for (P) and y ∈ ℜn is feasible for (D). ・König–Egervary theorem. ・y ≥ 0, A x ≤ b ⇒ yT A x ≤ yT b ・Max-flow min-cut theorem. ・x ≥ 0, AT y ≥ c ⇒ yT A x ≥ cT x ・von Neumann’s minimax theorem. ・Combine: cT x ≤ yT A x ≤ yT b. • ・… Pf. [ahead] 13 14 Projection lemma Projection lemma Weierstrass’ theorem. Let X be a compact set, and let f(x) be a continuous Weierstrass’ theorem. Let X be a compact set, and let f(x) be a continuous function on X. Then min { f(x) : x ∈ X } exists. function on X. Then min { f(x) : x ∈ X } exists. Projection lemma. Let X ⊂ ℜm be a nonempty closed convex set, and Projection lemma. Let X ⊂ ℜm be a nonempty closed convex set, and let y ∉ X. Then there exists x* ∈ X with minimum distance from y. let y ∉ X. Then there exists x* ∈ X with minimum distance from y. Moreover, for all x ∈ X we have (y – x*)T (x – x*) ≤ 0. Moreover, for all x ∈ X we have (y – x*)T (x – x*) ≤ 0. obtuse angle Pf. || y – x || 2 ・Define f(x) = || y – x ||. x Want to apply Weierstrass, but X not x y ・ y necessarily bounded. x* ・X ≠ φ ⇒ there exists xʹ ∈ X. x* ・Define Xʹ = { x ∈ X : || y – x || ≤ || y – xʹ || } xʹ so that Xʹ is closed, bounded, and Xʹ min { f(x) : x ∈ X } = min { f(x) : x ∈ Xʹ }. X ・By Weierstrass, min exists. X 15 16 Projection lemma Separating hyperplane theorem Weierstrass’ theorem. Let X be a compact set, and let f(x) be a continuous Theorem. Let X ⊂ ℜm be a nonempty closed convex set, and let y ∉ X. function on X. Then min { f(x) : x ∈ X } exists. Then there exists a hyperplane H = { x ∈ ℜm : aTx = α } where a ∈ ℜm, α ∈ ℜ that separates y from X. Projection lemma. Let X ⊂ ℜm be a nonempty closed convex set, and * aT x ≥ α for all x ∈ X let y ∉ X. Then there exists x ∈ X with minimum distance from y. aTy < α Moreover, for all x ∈ X we have (y – x*)T (x – x*) ≤ 0. Pf. Pf. ・Let x* be closest point in X to y. x* min distance ⇒ || y – x* || 2 ≤ || y – x || 2 for all x ∈ X. By projection lemma, ・ ・ y ・By convexity: if x ∈ X, then x* + ε (x – x*) ∈ X for all 0 < ε < 1. (y – x*)T (x – x*) ≤ 0 for all x ∈ X 2 2 * T ・|| y – x*|| ≤ || y – x* – ε(x – x*) || ・Choose a = x – y ≠ 0 and α = a x*. x* = || y – x*|| 2 + ε2 ||(x – x*)|| 2 – 2 ε (y – x*)T (x - x*) ・If x ∈ X, then aT(x – x*) ≥ 0; ・Thus, (y – x*)T (x - x*) ≤ ½ ε ||(x – x*)|| 2. thus ⇒ aTx ≥ aTx* = α. Letting +, we obtain the desired result. • Also, T T || ||2 • x ・ ε → 0 ・ a y = a (x* – a) = α – a < α X m T H = { x ∈ ℜ : a x = α} 17 18 Farkas’ lemma Another theorem of the alternative Theorem. For A ∈ ℜm×n , b ∈ ℜm exactly one of the following Corollary. For A ∈ ℜm×n , b ∈ ℜm exactly one of the following two systems two systems holds: holds: (II) ∃ y ∈ ℜm (I) ∃ x ∈ ℜn (II) ∃ y ∈ ℜm (I) ∃ x ∈ ℜn s. t. AT y ≥ 0 s. t. Ax = b s. t. AT y ≥ 0 s. t. Ax ≤ b yT b < 0 x ≥ 0 yT b < 0 x ≥ 0 y ≥ 0 Pf.€ [not both] Suppose x satisfies€ (I) and y satisfies (II). € € Then 0 > yT b = yTAx ≥ 0, a contradiction. Pf. Apply Farkas’ lemma to: Pf. [at least one] Suppose (I) infeasible. We will show (II) feasible. (I' ) x n , s m (II') ∃ y ∈ ℜm Consider S = { A x : x ≥ 0 } so that S closed, convex, b ∉ S. ∃ ∈ ℜ ∈ ℜ ・ T ・Let y ∈ ℜm, α ∈ ℜ be a hyperplane that separates b from S: s. t. A x + I s = b s. t. A y ≥ 0 x, s 0 I y ≥ 0 y Tb < α, yTs ≥ α for all s ∈ S. ≥ yT b < 0 ・0 ∈ S ⇒ α ≤ 0 ⇒ yTb < 0 T for all T since can be arbitrarily large. • ・y Ax ≥ α x ≥ 0 ⇒ y A ≥ 0 x € 19 € 20 LP strong duality LP strong duality Theorem. [strong duality] For A ∈ ℜm×n, b ∈ ℜm, c ∈ ℜn, if (P) and (D) are m nonempty then max = min. (II) ∃ y ∈ ℜ , z ∈ ℜ s. t. AT y − cz ≥ 0 T T T y b −α z < 0 (P) max c x (D) min y b T y, z ≥ 0 s. t. Ax ≤ b s. t. A y ≥ c x ≥ 0 y ≥ 0 Let y, z be a solution€ to (II). Pf. [max min] Weak LP duality. € ≤ € Pf. [min ≤ max] Suppose max < α. We show min < α. Case 1. [z = 0] ・Then, { y ∈ ℜm : AT y ≥ 0, yTb < 0, y ≥ 0 } is feasible. (I) ∃ x ∈ ℜn (II) ∃ y ∈ ℜm , z ∈ ℜ ・Farkas Corollary ⇒ { x ∈ ℜn : Ax ≤ b, x ≥ 0 } is infeasible. s. t. Ax ≤ b s. t. AT y − c z ≥ 0 ・Contradiction since by assumption (P) is nonempty. −cT x ≤ −α yT b − α z < 0 y, z 0 x ≥ 0 ≥ Case 2. [z > 0] Scale , so that satisfies (II) and ・ y z y z = 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us