PATTERN'recognition' and MACHINE'learning CHAPTER'5:'NEURAL'networks Include(Nonlinearity(G(X)(In(Output( With(Respect(To(Input

PATTERN'recognition' and MACHINE'learning CHAPTER'5:'NEURAL'networks Include(Nonlinearity(G(X)(In(Output( With(Respect(To(Input

PATTERN'RECOGNITION' AND MACHINE'LEARNING CHAPTER'5:'NEURAL'NETWORKS Include(Nonlinearity(g(x)(in(Output( with(Respect(to(Input Yk(X)(=(g((! wki(xi( +(wk0((),(k(=(1,(…,(K Y1(X)$…$$$$Yk(X) g($) g($) Output w_11$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$w_1d$$$$$$$$$$$$$$$$$$w_0 Input x_1$$$x_2$$$$$x_3$$$$x_4$$$$$…$$$$$$$$x_d$$$$$$$$$$$$$$$$x_0 Using$sigmoid$nonlinearity$and$normal$class$conditional$probability,$the$ output$oF$a$NN$discriminant$is$interpreted$as$posteriori$probabilities$p(x|Ck) Mapping'Arbitrary'Boolean'Function Input&vector:' length'd,'all'components'0'or'1 Output: 1:'if'the'given'input'is'class'A,'0:'if'input'from'class'B Total'2^d'inputs;'say'K'are'in'class'A,'2^d'C K'in'B 2&layers&of&FF&NN Input'size'2^d;'Hidden'size'K;'Output'size'1;'hardlim threshold'funct. Weights Input'C>'Hidden:'1'if'given'input'is'in'A'and'has'1at'the'node;'C1'otherw Hidden'C>'Out:'all'1;'Bias/hidden:'1Cb:if'node'K'has'b'ones;' Prove!:'this'NN'gives'1'if'input'from'A,'0'from'B. Mapping'Arbitrary'Function' with'34layer'FFNN Single'neuron'threshold 4>'half4space 2'layer'NN 4>'convex'region Output'bias:'4M(hidden'u.)'gives'logical'AND 3'layer'NN 4>'any'region'!!! Subdivide'input'into'approx.'hypercubes A'cluster'of'd'1st'hidden'nodes'maps'one'cube Bias'41'means'logical'OR'at'output Can'produce'any'combination'of'input'cubes' 3"Layer(Neural(Network((1(hidden(layer) Kolmogorov(Approximation(Theorem( (1957) Discovered(independently(of(NNs Related(to(Hilbert’s 23(unsolved(problems/1900 #13:(Can(a(function(of(several(variaBles(Be(represented(as(a( comBination(of(functions(of(a(few(variaBle.(Arnold:(yes(N 3( variaBle(with(2! Kolmogorov(AN: Any(multivariaBle(continuous(function(can(Be(expressed(as( superposition(of(functions(of(one(variaBle((a(small(numBer( of(components) Limitations: not(constructive,(too(complicated Example:)3+layer,)feedforward)ANN) with)supervised)learning Motivation)for)3+layer:)Kolmogorov)Representation)Theorem y y8 9 9 8 w94 w w w87 w 95 w w96 86 84 85 w97 4 5 6 7 w61 w w w53 w63 w w41 w51 w 52 62 w 73 42 w72 43 w71 1 2 3 x2 x3 x1 Example:)3+layer,)FF)ANN(cont’d) Assume:)transfer)function)is)just)summation v v v 4 5 6 v7 4 5 6 7 w61 w w62 w53 w63 w w41 w51 w 52 w 73 42 w72 43 w71 1 2 3 x x x1 2 3 &v # &w w w # 4 41 42 43 &x # Input0to0 $v ! $w w w ! 1 $ 5 ! = $ 42 52 53 !$x ! hidden0 $ 2 ! $v6 ! $w 43 w 62 w 63 ! weights $ ! $ !%$x3 "! %v7 " %w 44 w 72 w 73 " Example:)3+layer,)FF)ANN(cont’d) hidden)to)output)weights &v4 # y w w w w $v ! & 8 # & 84 85 86 87 #$ 5 ! $ ! = $ ! %y9 " %w 94 w 95 w 96 w 97 "$v6 ! $ ! %v7 " y y8 9 9 8 w 94 w w95 w w86 87 w84 w85 96 v v v 4 5 6 v7 Example:&34layer,&FF&ANN(cont’d) Final&matrix&representation&for&linear&system V = WBAX Y = WcbV = WCBWBAX y9 &w 41 w 42 w 43 # y8 $ !&x1 # &y # &w w w w # w w w 8 = 84 85 86 87 $ 42 52 53 !$x ! $ ! $ ! $ 2 ! %y9 " %w 94 w 95 w 96 w 97 "$w 43 w 62 w 63 ! $ !%$x3 "!9 8 Layer1C %w 44 w 72 w 73 " w94 w w w87 w 95 w w96 86 84 85 w97 Layer1B 4 5 6 7 w61 w w w53 w63 w w41 w51 w 52 62 w 73 42 w72 43 w71 Layer1A 1 2 3 x1 x2 x3 Transfer(Functions May(be(a(threshold(function(that(passes(information( ONLY(IF(the(output(exceeds(the(threshold Can(be(a(continuous(function(of(the(input The(output(is(usually(passed(to(the(output(path(of( the(node Example(of(transfer(function:(sigmoid Examples)of)Approximation) (with)3)hidden)nodes)) Approximation+by+gradient+descent Often+not+practical+to+directly+evaluate Use+approximation+of+the+error+function+by+iteration: dE/dw =+0+ Gradient+descent+idea:+! if+we+are+at+a+given+location+ (given+w+parameters+to+be+optimized],+then+change+w+in+ a+way+where+the+gradient+of+the+error+is+the+max W(t+1)+=+W(t)+– !dE/dW Continue+the+iteration+until+Converges+to+the+minimum Not+always+converges! Illustration+of+the+Error+Surface Learning(with( Error(Backpropagation((BP) Learning:( determine(the(weights(of(the(NN Assume: Structure(is(given Transfer(functions(are(given Input(A output(pair(are(given( Supervised(learning(based(on(examples! See:(derivation(of(backpropagation Backpropagation,Learning Paul,Werbos,(1974) PhD,work,Princeton Roots,of,backpropagation Rumelhart,,McClelanD,(1986) PDP,group,at,CMU Popularization,of,the,iDea http://scsnl.stanford.eDu/conferences/NSF_Brain_Network_Dynamics_Jan2007 http://www.archive.org/search.php?query=2007+brain+network+Dynamics Supervised*Learning*Scheme Standard'Backpropagation'– delta'rule Gradient'of'the'sum'squared'error & 'F 'F 'F # ( ) F(w) = ($ , ,..., ! w $ ! % 'w1 'w2 'wQ " Backpropagation'delta9rule N N %F 1 %Fk 1 k k = lim = lim & li z(l"1) j N $# ! N $# ! %wp N k =1 %wlij N k =1 Weight'change'algorithm'iteratively'from'top'layer' N backward new old 1 k k wlij = wlij !% lim & li z(l!1) j N #" $ N k =1 or new old k k wlij = wlij !%& li z(l!1) j Generalized ! -rule 2 1 N where: FYxYxw= * ()! (,) Fw()= lim Fk (); w k kk N !" # N k =1 N batch size #Fw() 1N #Fw() = lim k N !" $ ##wNwppk =1 !!!FFIk kk kkei = k " = zFIli= () li !!!wIwlij li lij l-th layer $$FF$ "#kk ith - node = kk% wz= z kk&'* lij(1) l!! q (1) l j $$Iwli lij()q $ I li kk Iwzli= " liq(1) l! q q ##FF kk==!!kkz ; k ##wIli(1) l" j li lij li ... w k lij k z(1)1l! k z z(1)maxlq! (1)2l! ... k ... z(1)lj! k We have to calculate !li! =1 1 m $F $$zFk "#**2 l: output layer: k *li= k '(%&%& ykk) z= ))2 y kk z 2 k kk3*+*+p lp i li $F 2 $$zli Izli $ li '(,-,- ! k ==k ./p=1 li k 4 $$$Fzk F l: not output layer: k* li== k F0 Ik $Ili kk k( li ) 2 $$zIli li $ z li k 52 !"µl+1 #F #I k * (1)lp+ FI$ k ==%&) kk( li ) '(%&p=1 ##Iz(1)l+ p li !"µl+1 #F # $% k kk& =+='(kk* )*wzFI(1)l+ p lr( li ) // -.'(pr=1 ##Iz(1)l+ p li +, "#µµll++11$F k %%kk k ==&'k **()wFI(1)l+++ pi( li) ! (1)(1) l p wFI l pi li ** ()&'pp==11$I(1)lp+ N %F 1 kk k = !!liz(1) l" j where li is determined iteratively (see above) lim & %wNp N #$ k =1 N algorithm: weight change is new old1 k k wwlij= lij# !"% li z(1) l# j !F N k =1 proportional to (gradient): !wlij $ 0< ! ~small ( learning rate) Convergence)of)Backpropagation 1. Standard)backpropagation)reduces)error)F 9 BUT:)no)guarantee)of)convergence)to)global) minimum 9 Possible)problems: 9 Local)minimum 9 Very)slow)decrease 2. Theorem)on)the)approximation)by)39layer)NN Any)square)integrable)function)can)be)approximated) with)arbitrary)accuracy)by)a)39layer)backpropagation) ANN. 9 BUT:)no)guarantee)that)BP)(delta9rule)or)other)) gives)the)optimum)approximation Theorem'on'opt.'approx.'by'backpropagation D.W.Ruck,)S.K.Rogers,…)IEEE)Trans.)Neur.)Netw.,Vol.)1.pp.296A298,) 1990. Two'classes: p(x):=p(x|w1)P(w1)'+'p(x|w2)P(w2) p(x) @probability'distribution'of'feature'vectors'x''''''''''''''''''''p(x|wi)@ conditional'probability'density'f.'of'class'wi P(wi) @’a@priori’' probability'of'class'wi,'i=1,2.'''''''''''''P(wi|x) @’a@posteriori’' probability'of'class'x'to'belong'to'class'I Bayes'Rule: p(x|wi)P(wi)'='P(wi|x)p(x) Bayes'Discriminant:'''''P(w1|x)'– P(w2|x)'>'0 !select'class'1 THEOREM'(approximation'by'BPNN) An'optimally'selected'BP'NN'approximates'the'Bayesian'(maximum)' discriminant'function. NOTE:'the'actual'approximation'depends'on'the'structure'of'the' network,'class'conditional'probabilities'etc. Local&quadratic&approximation Taylor&expansion&of&error&function&w.r.t.&weights 1st and&2nd order:&gradient&and&Hessian&(H): Gradient&of&the&error: Modifications+of+Standard+Backpropagation 1. Optimum+choice+of+learning+rate: Initialization+of+weights Adaptive+learning+rate Randomization 2. Adding+a+momentum+term w k+1 = w k +#(1! µ)" k xk + µ(w k ! w k-1) 3. Regularization+term+to+SSE e.g.,+sum+of+weights+! pruning Forgetting+rate+! pruning * 2 I = !(yi " yi ) + ε'!| w ij |, i i, j Basic&NN&Architectures Feed$forward*NN Directed&graph&in&which&a&path&never&visits&the&same&node&twice Relatively&simple&behavior Example:&MLP&for&classification,&pattern&recognition Feedback*or*Recurrent*NNs Contains&loops&of&directed&edges&going&forward&and&also&backward Complicated&oscillations&might&occur Example:&Hopfield&NN,&Elman&NN&for&speech&recogn. Random*NNs More&realistic,&very&complex.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us