Symmetries and Gauge Fields in the Hamiltonian Constraint Formulation

Symmetries and Gauge Fields in the Hamiltonian Constraint Formulation

Symmetries and gauge fields in the Hamiltonian constraint formulation of classical field theories V´aclavZatloukal (www.zatlovac.eu) Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague talk given at \ICCA11" Ghent, 8 August 2017 V´aclavZatloukal Symmetries and gauge fields 1 / 17 Motivation I: Unification of fundamental interactions Faraday-Maxwell's field theory of electromagnetism Einstein's field theory of gravity (general relativity) (interactions at distance replaced by interactions mediated by fields) [H. Goenner, On the History of Unified Field Theories, Living Rev. Relativity 7, 2 (2004)] Nowadays we have: Electromagnetism weak strong interaction ⊕ ⊕ (Yang-Mills theories with gauge groups U(1), SU(2) and SU(3), resp.) Gravity (see Gauge Theory Gravity) ⊕ [A. Lasenby, C. Doran, S. Gull, Gravity, gauge theories and geometric algebra, Phil. Trans. Roy. Soc. Lond. A 356 (1998) 487-582, arXiv:gr-qc/0405033] My aim: Understand the relation between Gravity and Yang-Mills on the level of classical field theory. V´aclavZatloukal Symmetries and gauge fields 2 / 17 Motivation II: Quantization in Hamiltonian formalism Non-relativistic mechanical system with Hamiltonian H0(x; p): Hamilton-Jacobi [quantization: p^ = i~ @=@x] Schr¨odinger eq. ! − ! @S @S @ @ + H0(x; ) = 0 i~ + H0(x; i~ ) (x; t) = 0 (1) @t @x ! − @t − @x Field theoretic Hamiltonian formalism: [M. J. Gotay et. al, arXiv:physics/9801019v2, arXiv:math-ph/0411032] 1) canonical: -dim. space of field configurations functional Schr. eq. 1 ! 2) covariant: finite-dim. configuration space, generalized momentum, classical De Donder-Weyl theory precanonical Schr. eq. ! [I. V. Kanatchikov, Rep. Math. Phys. 43 (1999) 157, arXiv:9810165, arXiv:1312.4518] My talk: Hamiltonian constraint formalism ( covariant) ∼ V´aclavZatloukal Symmetries and gauge fields 3 / 17 Outline Unifying spacetime and the space of fields Hamiltonian constraint formulation of field theories Canonical equations of motion Local Hamilton-Jacobi theory Symmetries and Hamiltonian Noether theorem Local symmetries and the gauge field Example: Scalar field coupled to gravity and Yang-Mills field [V.Z., Int. J. Geom. Methods Mod. Phys. 13, 1650072 (2016), arXiv:1504.08344] [V.Z., Adv. Appl. Clifford Algebras 27, 829-851 (2017), arXiv:1602.00468] [V.Z., arXiv:1611.02906 (2016)] V´aclavZatloukal Symmetries and gauge fields 4 / 17 Mathematical language: Geometric algebra Geometric algebra and calculus [D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus, Springer (1987)] [C. Doran and A. Lasenby, Geometric Algebra for Physicists, Cambridge Univ. P. (2007)] ( Clifford algebra, Dirac algebra of γ-matrices) , Geometric product: ab = a b + a b · ^ { associative, invertible, non-commutative ( ) inner product: a b = b a ( ) outer product a b = b a · · · ^ ^ − ^ a2 a1 =a1 a2 = ∧ ∧ Many useful tools: multivector derivative, rotors, bivector algebras, ... ! Coordinate-free differential geometry ! V´aclavZatloukal Symmetries and gauge fields 5 / 17 Unifying spacetime and the field space Fields as functionsΦ( x) surfaces γ = q = (x; y) g(x; y) = 0 ! f j g [x = (x µ); y = (φa)] φa φa P γ a µ φ (x ) b (xµ, φa)= q x1 x1 x0 x0 (cf. special relativity: t; x xµ Minkowski space) ! 2 xµ; φa ::: partial observables = q ::: configuration space { N + D-dimensional C f g γ ::: motions { D-dim. surfaces (correlations among partial observ.) ⊂ C [Chap. 3 in C. Rovelli, Quantum Gravity, Cambridge Univ. Press (2004)] V´aclavZatloukal Symmetries and gauge fields 6 / 17 Variational principle with Hamiltonian constraint Variational principle RD+N Extremize P ′ C ≃ dΓ′ b q′ f [γ; P] = P(q) dΓ(q) (2) P γ′ A γ · Z Iγ dΓ γ b under Hamiltonian constraint q dΣ ∂γ = ∂γ′ H(q; P(q)) = 0 q γ: (3) 8 2 dΓ ::: oriented surface element of γ P ::: multivector of grade D (H is a generic function of q and P, not energy or its density!) Non-relativistic mechanics ::: H = p et + H0(q; px ) 1 · N 2 Scalar field theory ::: H = P Ix + Ix (P ea) + V (y) · 2 a=1 · · String theory ::: H = 1 ( P 2 Λ2) 2 j j − P V´aclavZatloukal Symmetries and gauge fields 7 / 17 Classical field theory from Hamiltonian constraint R Lagrange multiplier of Hamiltonian constraint: A[γ; P; λ] = γ [P · dΓ − λ(q)H(q; P)] Canonical equations of motion: ! λ @P H(q; P) = dΓ (4a) D dΓ @qP for D = 1 (particles) ( 1) λ @_qH(_q; P) = · (4b) − ((dΓ @q) P for D > 1 (fields) · · H(q; P) = 0 (4c) Local Hamilton-Jacobi theory: ! H(q;@q S) = 0 (5) ^ (Partial diff. eq., S(q) is not classical action cl [@γ]) A [V.Z., Int. J. Geom. Meth. Mod. Phys. 13, 1650072 (2016), arXiv:1504.08344] [F. H´eleinand J. Kouneiher, J. Math. Phys. 43, 2306 (2002), arXiv:0010036] V´aclavZatloukal Symmetries and gauge fields 8 / 17 Symmetries and conservation laws (Active) Transformation q0 = f (q): RD+N C ≃ 1 P ′ = f − (P ) γ′ P b q′ dΓ′ = f(dΓ) dΓ f γ b q −1 −1 f (a) = a · @qf (q) (push-forward), f (b) = @qf (q) · b (pull-back) Symmetry if: H(q0; P0) = H(q; P)( [γ0; P0; λ0] = [γ; P; λ]) !A A Conservation law: (corresp. to infsm. sym. f (q) = q + "v(q)) ! D > 1 : (dΓ @q) (P v) = 0 ; D = 1 : dΓ @q(P v) = 0 (6) · · · · · P v ::: conserved multivector of grade D 1( Noether current) [V.Z.,· Adv. Appl. Cliff. Alg. 27, 829-851 (2017),− arXiv:1602.00468,∼ arXiv:1604.03974] V´aclavZatloukal Symmetries and gauge fields 9 / 17 Local transformations Assume H(q0; P) = H(q; P) and define the Gauged Hamiltonian Hh(q; P) = H(q; h(P; q)) (7) where h is the adjoint of a q-dependent linear mapping h (cf. vielbein) Transformation rule for the (static) gauge field h: h0(b; q0) = h f (b; q); q ( b) (8) 8 0 0 Then: Hh0 (q ; P ) = Hh(q; P) classical motions of Hh are transformed to classical motions of Hh0 ) [V.Z., arXiv:1611.02906 (2016)] V´aclavZatloukal Symmetries and gauge fields 10 / 17 Gauge field strength Canonical equations of motion for Hh(q; P): (denote P¯ = h(P)) ¯ −1 λ @P¯H(q; P) = h (dΓ) (9a) D −1 −_ 1 ( 1) λ h(@_q)H(_q; P¯) h (dΓ) h @_q h (P¯) − − · ^ dΓ @qP¯ for D = 1 = · (9b) −1 ¯ (h (dΓ @q) P for D > 1 · · H(q; P¯) = 0 (9c) Field strength: linear mapping from n to n + 1-vectors −_ 1 F (P¯) = h @_q h (P¯) (10) − ^ 0 0 Gauge invariance: F (P¯ ) = F (P¯) D+N µ µ j j −1 Coordinate frame feµgµ=1 : hj = γj · h(e ) ; h µ = γ · h (eµ) ρ ρ j ρ j −1 ρ Field strength as torsion: T µν = hj @µh ν − hj @ν h µ = h (eµ ^ eν ) · F (h(e )) V´aclavZatloukal Symmetries and gauge fields 11 / 17 Example: Scalar field D-dim. spacetime: x = (x µ) P (q) e φ = y N-dim. field space: y = (φ1; : : : ; φN ) a a a P b q Lagrangian formulation: γ dΓ= g(dX) Iy SF [y(x)] = g A P(x) 1 D µ b x d x (@µy) (@ y) V (y) dX 2 · − Ω Z Ix Hamiltonian constraint for scalar field coupled to a gauge field: N 1 2 HSF ;h(q; P) = h(P) Ix + Ix (h(P) ea) + V (y) (11) · 2 · · a=1 X Eliminating momentum P (using the first canonical equation (9a)) N 1 −1 −1 2 −1 −1 SF ;h[γ] = I (h (dΓ) ea) λV (y) ; λ = I h (dΓ) A 2λ x · · − x · Zγ " a=1 # X V´aclavZatloukal Symmetries and gauge fields 12 / 17 Scalar field and gravity 0 Spacetime diffeomorphisms: q = fGr (q) = fx (x) + y Gravitational gauge field: hGr (b; q) = hx (bx ; x)+ by 0 0 Transformation rule: hx (bx ; x ) = hx f x (bx ; x); x −1 We calculate: λGr = dX det(h ) j j Gr Scalar field in gravitational background: N −1 1 2 SF ;h [y(x)] = det(h ) hGr (@x φa) V (y) dX (12) A Gr Gr 2 − j j ZΩ " a=1 # X V´aclavZatloukal Symmetries and gauge fields 13 / 17 Scalar field and Yang-Mills 0 −By (x)=2 Local field-space rotations: q = fYM (q) = R(x)qR(x), R(x) = e (Assuming V (y 0) = V (y)) e µ Yang-Mills gauge field: hYM (b; q) = S(x)bS(x) γ y Aµ(x) b µ − · · fγ g ::: orthogonal spacetime basis fAµg ::: field-space bivectors (, skew-symm.e mapA µ : y 7! y · Aµ) S ::: field-space rotor 0 0 Transformation rules: S = RS , A = RAµR 2R@µR µ − We calculate: λYM = dX j j e e Scalar field in Yang-Mills background: 1 µ µ SF ;YM [y(x)] = (@µy + y Aµ) (@ y + y A ) V (y) dX A Ω 2 · · · − j j Z (13) V´aclavZatloukal Symmetries and gauge fields 14 / 17 Dynamics of the gauge field −_ 1 Field strength corresponding to gauge field h: F (b) = h @_q h (b) − ^ Gravitational field strength (cf. teleparallel gravity) −_ 1 FGr (b) = hx @_x hx (bx ) (14) − ^ Yang-Mills field strength 1 µ ν FYM (b) = γ γ [y (@νAµ @µAν Aµ Aν)] (SbS) 2 ^ · − − × · µ + γ (SAµS 2S@µS) b (15) ^ − · e e e Q: Find a kinetic term for the unified gauge field h that reduces to −1 1) Gravitational kinetic term: det(hGr ) R µν 2) Yang-Mills kinetic term: Tr(FµνF ) V´aclavZatloukal Symmetries and gauge fields 15 / 17 Detour: Geometry of embedded surfaces n N Embedded manifold R with pseudoscalar IM(x) M ⊂ −1 Shape tensor: S(a) = I a @IM , a is tangent vector M · Covariant derivative: a DM = a @M M S(a) · · − × (Shape S ! ChristoffelsΓ and Gauge potentials A?) Curvature: ! S(a) S(b) = R(a b) + F (a b) (16) × ^ ^ R ::: intrinsic, F ::: external [D.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us