Role of Fission in R-Process Nucleosynthesis

Role of Fission in R-Process Nucleosynthesis

Role of fission in r-process nucleosynthesis Samuel A. Giuliani NSCL/FRIB, East Lansing July 12th, 2018 FRIB and the GW170817 kilonova NSCL/FRIB at MSU Introduction Fission and r process Fission fragments distributions Conclusions & Outlook Outline 1. Introduction 2. Impact of fission on r-process nucleosynthesis 3. Fission fragments distributions 4. Conclusions & Outlook Introduction Fission and r process Fission fragments distributions Conclusions & Outlook Outline 1. Introduction 2. Impact of fission on r-process nucleosynthesis 3. Fission fragments distributions 4. Conclusions & Outlook Introduction Fission and r process Fission fragments distributions Conclusions & Outlook The r process r(apid neutron capture) process: τn τβ− β decay neutron capture unstable nuclei stable nuclei Z neutron N shell closure How far can the r process proceed? Number of free neutrons that seed nuclei can capture (neutron-to-seed ratio). Introduction Fission and r process Fission fragments distributions Conclusions & Outlook r process and fission 250 Known mass Known half−life r−process waiting point (ETFSI−Q) 100 200 98 96 94 92 fission 90 88 Solar r abundances 86 84 188 190 186 82 80 78 184 180 182 76 178 176 74 164 166 168 170 172 174 150 72 162 70 160 N=184 68 158 66 156 154 64 152 150 62 140 142 144 146 148 1 60 138 134 136 58 130 132 For large neutron-to-seed ratio 0 128 10 56 54 126 10 −1 124 52 122 120 50 116 118 fission is unavoidable 10 −2 48 112 114 110 10 46 −3 108 N=126 100 106 44 104 100 102 42 10 98 96 40 92 94 - n-induced fission 38 88 90 86 36 84 82 34 80 78 32 74 76 30 72 70 - β-delayed fission 28 66 68 64 26 62 N=82 28 60 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 - spontaneous fission I Where does fission occur? I How much material accumulates in fissioning region? I What are the fission yields? Introduction Fission and r process Fission fragments distributions Conclusions & Outlook 1) Compute fission properties and binding energies using BCPM EDF. Bf −Sn (MeV) -2 0 2 4 6 8 10 12 14 120 110 Sn = 2 MeV 100 Sn = 0 MeV 90 Protonnumber 120 140 160 180 200 220 240 Neutron number 2) Calculate stellar reaction rates from Hauser-Feshbach theory. 28 3 Dominating channel at n =10 cm− 120 n (n,γ) 110 (n,fission) spont. fission 100 Sn= 2 MeV Sn= 0 MeV 90 Proton number 120 140 160 180 200 220 240 Neutron number 3) Obtain r-process abundances using network calculations. log10(Y) -25 -20 -15 -10 -5 0 120 110 100 90 Proton number 120 140 160 180 200 220 240 Neutron number Introduction Fission and r process Fission fragments distributions Conclusions & Outlook The fission process -2035 inner neutron-induced barrier outer beta-delayed photo-induced * barrier E fission -2040 (MeV) ground fission spontaneous state isomer fission HFB -2045 E 286 -2050 114Fl 0 10 20 30 40 50 60 70 80 Q20 (b) Potential Energy Surface Collective inertias Energy evolution from the initial Resistance of the nucleus state to the scission point. against the deformation forces. SAG+ PRC90(2014); Sadhukhan+ PRC90(2014) Baran+ PRC84 (2011) Introduction Fission and r process Fission fragments distributions Conclusions & Outlook The Hartree-Fock-Bogolyubov (HFB) formalism The ground-state wavefunction is obtained by minimizing the total energy: δE[|Ψi] = 0 , where |Ψi is a quasiparticle (β) vacuum: Y |Ψi = βµ|0i ⇒ βµ|Ψi = 0 . µ The energy landscape is constructed by constraining the deformation of the nucleus hΨ(q)|Qˆ |Ψ(q)i = q: E[|Ψ(q)i] = hΨ(q)|Hˆ − λqQˆ |Ψ(q)i . The energy density functionals (EDF) provide a phenomenological ansatz of the effective nucleon-nucleon interaction: - Barcelona-Catania-Paris-Madrid (BCPM); - Skyrme and Gogny interactions (UNEDF1, D1S); - relativistic EDF. Introduction Fission and r process Fission fragments distributions Conclusions & Outlook Outline 1. Introduction 2. Impact of fission on r-process nucleosynthesis 3. Fission fragments distributions 4. Conclusions & Outlook Introduction Fission and r process Fission fragments distributions Conclusions & Outlook Nuclear inputs from the BCPM EDF We study the impact of fission in the r process by comparing BCPM with previous calculations based on Thomas-Fermi (TF) barriers and Finite Range Droplet Model (FRDM) masses. Fission barrier (MeV) 0 2 4 6 8 10 12 14 120 BCPM 18 BCPM 126 110 14 Sn = 2 MeV 10 100 Sn = 0 MeV (MeV) n 2 6 174 S 90 Proton number 2 184 120 TF 18 FRDM 126 110 14 100 10 (MeV) n 2 6 174 S 90 Proton number 2 184 120 140 160 180 200 220 240 90 100 110 120 Neutron number Proton number BCPM: Giuliani et al. (2018); TF: Myers and Swiat¸ecky´ (1999); FRDM:M¨oller et al. (1995). Introduction Fission and r process Fission fragments distributions Conclusions & Outlook Compound reactions Reaction rates computed within the Hauser-Feshbach statistical model. γ gamma decay particle emission target compound nucleus fission - Based on the Bohr independence hypothesis: the decay of the compound nucleus is independent from its formation dynamics. - BCPM nuclear inputs implemented in TALYS reaction code to compute n-induced fission and n-capture rates. Introduction Fission and r process Fission fragments distributions Conclusions & Outlook Cross sections from BCPM 104 103 (mb) ) 102 n,fiss ( σ 101 Experiment BCPM 235U(n,fis) 238U(n,fis) 238Pu(n,fis) 104 Energy (MeV) Energy (MeV) Energy (MeV) 235U(n,g) 238U(n,g) 238Pu(n,g) 103 (mb) 2 ) 10 n,γ ( σ 101 10-2 10-1 100 101 10-2 10-1 100 101 10-2 10-1 100 101 Energy (MeV) Energy (MeV) Energy (MeV) Introduction Fission and r process Fission fragments distributions Conclusions & Outlook Stellar reaction rates - impact of collective inertias? spont. fis. (n,γ) (n,fis) α-decay (n,α) (n,2n) 120 110 100 90 ATDHFB-r 120 110 Sn = 2 MeV 100 Sn = 0 MeV 90 GCM-r Proton number 120 110 100 90 SEMP-r 120 140 160 180 200 220 240 Neutron number SAG, Mart´ınez-Pinedo and Robledo, Phys. Rev. C 97, 034323 (2018) Introduction Fission and r process Fission fragments distributions Conclusions & Outlook The dynamical ejecta in neutron mergers Trajectory from 3D relativistic simulations of 1.35 M -1.35 M NS mergers. 30 14.5 30 14.5 14 14 20 13.5 20 13.5 13 13 10 10 12.5 12.5 12 12 0 0 y [km] y y [km] y 11.5 11.5 11 11 10 10 10.5 10.5 20 10 20 10 9.5 9.5 30 9 30 9 30 20 10 0 10 20 30 30 20 10 0 10 20 30 x [km] x [km] 13.0056 ms 13.4824 ms 50 14.5 50 14.5 14 40 14 40 13.5 30 13.5 30 13 13 20 20 12.5 12.5 10 10 12 12 0 0 y [km] y y [km] y 11.5 11.5 10 10 11 11 20 20 10.5 10.5 30 30 10 10 40 9.5 40 9.5 50 9 50 9 50 0 50 50 0 50 x [km] 13.8024 ms x [km] 15.167 ms Bauswein et al., ApJ 773, 78 (2013). - Large amount of ejecta (0.001-0.01 M ). - Material extremely neutron rich (Rn/s & 600). - Role of weak interactions? - nuclei around A > 280 longer lifetimes , - accumulation above 2nd peak. - FRDM-TF peak at A ∼ 257, - impact on final abundances at A ∼ 110. I BCPM barriers larger thanTF: I BCPM shell gap smaller than FRDM at N = 174: I Same 232Th/238U ratio: progenitors of actinides have Z < 84 ⇒ can initial nuclei with Z ≥ 84 survive to fission? Introduction Fission and r process Fission fragments distributions Conclusions & Outlook r-process abundances: BCPM vs FRDM+TF 10-2 abundances at n/s=1 10-3 I Trajectory: 3D relativistic simulations from 10-4 1.35 M -1.35 M NS mergers [Bauswein+(2013)]. 10-5 10-6 BCPM Giuliani+(2017) vs TF+FRDM Panov+(2010). I 10-7 I We changed the rates of nuclei with Z ≥ 84. 10-8 10-9 -2 Same β-decay rates [M¨oller et al. PRC67(2003)]. 10 I abundances at τ (n,γ) = τβ 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-2 abundances at 1 Gyr 10-3 10-4 10-5 10-6 10-7 solar BCPM 10-8 FRDM+ TF 10-9 100 150 200 250 300 A Introduction Fission and r process Fission fragments distributions Conclusions & Outlook r-process abundances: BCPM vs FRDM+TF 10-2 abundances at n/s=1 I Trajectory: 3D relativistic simulations from 10-3 10-4 1.35 M -1.35 M NS mergers [Bauswein+(2013)]. 10-5 I BCPM Giuliani+(2017) vs TF+FRDM Panov+(2010). 10-6 10-7 We changed the rates of nuclei with Z ≥ 84. -8 I 10 -9 Same β-decay rates [M¨oller et al. PRC67(2003)]. 10 I 10-2 abundances at τ (n,γ) = τβ 10-3 I BCPM barriers larger thanTF: 10-4 -5 - nuclei around A > 280 longer lifetimes , 10 10-6 - accumulation above 2nd peak. 10-7 10-8 I BCPM shell gap smaller than FRDM at N = 174: 10-9 10-2 abundances at 1 Gyr - FRDM-TF peak at A ∼ 257, 10-3 - impact on final abundances at A ∼ 110.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us