Chapter 1: Distribution Theory Chapter 1 Distribution Theory 2

Chapter 1: Distribution Theory Chapter 1 Distribution Theory 2

CHAPTER 1 DISTRIBUTION THEORY 1 CHAPTER 1: DISTRIBUTION THEORY CHAPTER 1 DISTRIBUTION THEORY 2 Basic Concepts CHAPTER 1 DISTRIBUTION THEORY 3 • Random Variables (R.V.) { discrete random variable: probability mass function { continuous random variable: probability density function CHAPTER 1 DISTRIBUTION THEORY 4 • \Formal but Scary" Definition of Random Variables { R.V. are some measurable functions from a probability measure space to real space; { probability is some non-negative value assigned to sets of a σ-field; { probability mass ≡ the Radon-Nykodym derivative of the random variable-induced measure w.r.t. to a counting measure; { probability density function ≡ the derivative w.r.t. Lebesgue measure. CHAPTER 1 DISTRIBUTION THEORY 5 • Descriptive quantities of univariate distribution { cumulative distribution function: P (X ≤ x) { moments (mean): E[Xk] { quantiles { mode { centralized moments (variance): E[(X − µ)k] { the skewness: E[(X − µ)3]=V ar(X)3=2 { the kurtosis: E[(X − µ)4]=V ar(X)2 CHAPTER 1 DISTRIBUTION THEORY 6 • Characteristic function (c.f.) { ϕX (t) = E[expfitXg] { c.f. uniquely determines the distribution Z 1 T e−ita − e−itb FX (b) − FX (a) = lim ϕX (t)dt T !1 2π −T it Z 1 1 −itx fX (x) = e ϕ(t)dt: 2π −∞ CHAPTER 1 DISTRIBUTION THEORY 7 • Descriptive quantities of multivariate R.V.s { Cov(X; Y ); corr(X; Y ) { fXjY (xjy) = fX;Y (x; y)=fY (y) R { E[XjY ] = xfXjY (xjy)dx { Independence: P (X ≤ x; Y ≤ y) = P (X ≤ x)P (Y ≤ y), fX;Y (x; y) = fX (x)fY (y) CHAPTER 1 DISTRIBUTION THEORY 8 • Equalities of double expectations E[X] = E[E[XjY ]] V ar(X) = E[V ar(XjY )] + V ar(E[XjY ]) • Useful when the distribution of X given Y is simple! CHAPTER 1 DISTRIBUTION THEORY 9 Examples of Discrete Distributions CHAPTER 1 DISTRIBUTION THEORY 10 • Binomial distribution { Binomial(n; p():) n k − n−k P (Sn = k) = k p (1 p) ; k = 0; :::; n { E[Sn] = np; V ar(Sn) = np(1 − p) it n ϕX (t) = (1 − p + pe ) { Binomial(n1; p) + Binomial(n2; p) ∼ Binomial(n1 + n2; p) CHAPTER 1 DISTRIBUTION THEORY 11 • Negative Binomial distribution ( ) k−1 m − k−m { P (Wm = k) = m−1 p (1 p) k = m; m + 1; ::: 2 { E[Wm] = m=p; V ar(Wm) = m=p − m=p { Neg-Binomial(m1; p) + Neg-Binomial(m2; p) ∼ Neg-Binomial(m1 + m2; p) CHAPTER 1 DISTRIBUTION THEORY 12 • Hypergeometric distribution ( )( ) ( ) M N−M N { P (Sn = k) = k n−k = n ; k = 0; 1; ::; n { E[Sn] = Mn=(M + N) nMN(M+N−n) { V ar(Sn) = (M+N)2(M+N−1) CHAPTER 1 DISTRIBUTION THEORY 13 • Poisson distribution { P (X = k) = λke−λ=k!; k = 0; 1; 2; ::: { E[X] = V ar(X) = λ, it ϕX (t) = exp{−λ(1 − e )g { P oisson(λ1) + P oisson(λ2) ∼ P oisson(λ1 + λ2) CHAPTER 1 DISTRIBUTION THEORY 14 • Poisson vs Binomial { X1 ∼ P oisson(λ1);X2 ∼ P oisson(λ2) λ1 { X1jX1 + X2 = n ∼ Binomial(n; ) λ1+λ2 { if Xn1; :::; Xnn are i.i.d Bernoulli(pn) and npn ! λ, then n! λk P (S = k) = pk (1 − p )n−k ! e−λ: n k!(n − k)! n n k! CHAPTER 1 DISTRIBUTION THEORY 15 • Multinomial Distribution { Nl; 1 ≤ l ≤ k counts the number of times that fY1; :::; Yng fall into Bl ( ) n n1 nk { P (N1 = n1; :::; Nk = nk) = p ··· p n1;:::;nk 1 k n1 + ::: + nk = n { the covariance matrix for (N1; :::; Nk) 0 1 p (1 − p ) ::: −p p B 1 1 1 k C B . C n @ . .. A −p1pk : : : pk(1 − pk) CHAPTER 1 DISTRIBUTION THEORY 16 Examples of Continuous Distribution CHAPTER 1 DISTRIBUTION THEORY 17 • Uniform distribution { Uniform(a; b): fX (x) = I[a;b](x)=(b − a) { E[X] = (a + b)=2 and V ar(X) = (b − a)2=12 CHAPTER 1 DISTRIBUTION THEORY 18 • Normal distribution 2 { N(µ, σ2): f (x) = p 1 exp{− (x−µ) g X 2πσ2 2σ2 { E[X] = µ and V ar(X) = σ2 2 2 { ϕX (t) = expfitµ − σ t =2g CHAPTER 1 DISTRIBUTION THEORY 19 • Gamma distribution 1 θ−1 {− x g { Gamma(θ; β): fX (x) = βθΓ(θ) x exp β ; x > 0 { E[X] = θβ and V ar(X) = θβ2 { θ = 1 equivalent to Exp(β) 2 { θ = n=2; β = 2 equivalent to χn CHAPTER 1 DISTRIBUTION THEORY 20 • Cauchy distribution 1 { Cauchy(a; b): fX (x) = bπf1+(x−a)2=b2g { E[jXj] = 1, ϕX (t) = expfiat − jbtjg { often used as counter example CHAPTER 1 DISTRIBUTION THEORY 21 Algebra of Random Variables CHAPTER 1 DISTRIBUTION THEORY 22 • Assumption { X and Y are independent and Y > 0 { we are interested in d.f. of X + Y; XY; X=Y CHAPTER 1 DISTRIBUTION THEORY 23 • Summation of X and Y { Derivation: F (z) = E[I(X + Y ≤ z)] = E [E [I(X ≤ z − Y )jY ]] X+Y Z Y X = EY [FX (z − Y )] = FX (z − y)dFY (y) { Convolution formula: Z FX+Y (z) = FY (z − x)dFX (x) ≡ FX ∗ FY (z) Z Z fX ∗fY (z) ≡ fX (z−y)fY (y)dy = fY (z−x)fX (x)dx CHAPTER 1 DISTRIBUTION THEORY 24 • Product and quotient of X and Y (Y > 0) R { FXY (z) = E[E[I(XY ≤ z)jY ]] = FX (z=y)dFY (y) Z fXY (z) = fX (z=y)=yfY (y)dy R { FX=Y (z) = E[E[I(X=Y ≤ z)jY ]] = FX (yz)dFY (y) Z fX=Y (z) = fX (yz)yfY (y)dy CHAPTER 1 DISTRIBUTION THEORY 25 • Application of formulae 2 2 ∼ 2 2 { N(µ1; σ1) + N(µ2; σ2) N(µ1 + µ2; σ1 + σ2) { Gamma(r1; θ) + Gamma(r2; θ) ∼ Gamma(r1 + r2; θ) { P oisson(λ1) + P oisson(λ2) ∼ P oisson(λ1 + λ2) { Negative Binomial(m1; p) + Negative Binomial(m2; p) ∼ Negative Binomial(m1 + m2; p) CHAPTER 1 DISTRIBUTION THEORY 26 • Summation of R.V.s using c.f. { Result: if X and Y are independent, then ϕX+Y (t) = ϕX (t)ϕY (t) { Example: X and Y are normal with f − 2 2 g ϕX (t) = exp iµ1t σ1t =2 ; f − 2 2 g ϕY (t) = exp iµ2t σ2t =2 ) f − 2 2 2 g ϕX+Y (t) = exp i(µ1 + µ2)t (σ1 + σ2)t =2 CHAPTER 1 DISTRIBUTION THEORY 27 • Further examples of special distribution ∼ ∼ 2 ∼ 2 { assume X N(0; 1), Y χm and Z χn are independent; { X q ∼ Student's t(m); Y=m Y=m ∼ Snedecor's F ; Z=n m;n Y ∼ Beta(m=2; n=2): Y + Z CHAPTER 1 DISTRIBUTION THEORY 28 • Densities of t−, F − and Beta− distributions Γ((m+1)=2) 1 p −∞ 1 { ft(m)(x) = πmΓ(m=2) (1+x2=m)(m+1)=2 I( ; )(x) Γ(m+n)=2 (m=n)m=2xm=2−1 1 { fFm;n (x) = Γ(m=2)Γ(n=2) (1+mx=n)(m+n)=2 I(0; )(x) Γ(a+b) a−1 − b−1 2 { fBeta(a;b)(x) = Γ(a)Γ(b) x (1 x) I(x (0; 1)) CHAPTER 1 DISTRIBUTION THEORY 29 • Exponential vs Beta- distributions { assume Y1; :::; Yn+1 are i.i.d Exp(θ); Y1+:::+Yi { Zi = ∼ Beta(i; n − i + 1); Y1+:::+Yn+1 { (Z1;:::;Zn) has the same joint distribution as that of the order statistics (ξn:1; :::; ξn:n) of n Uniform(0,1) r.v.s. CHAPTER 1 DISTRIBUTION THEORY 30 Transformation of Random Vector CHAPTER 1 DISTRIBUTION THEORY 31 Theorem 1.3 Suppose that X is k-dimension random vector with density function fX (x1; :::; xk). Let g be a one-to-one and continuously differentiable map from Rk to Rk. Then Y = g(X) is a random vector with density function −1 fX (g (y1; :::; yk))jJg−1 (y1; :::; yk)j; −1 where g is the inverse of g and Jg−1 is the Jacobian of g−1. CHAPTER 1 DISTRIBUTION THEORY 32 • Example { let R2 ∼ Expf2g; R > 0 and Θ ∼ Uniform(0; 2π) be independent; { X = R cos Θ and Y = R sin Θ are two independent standard normal random variables; { it can be applied to simulate normally distributed data. CHAPTER 1 DISTRIBUTION THEORY 33 Multivariate Normal Distribution CHAPTER 1 DISTRIBUTION THEORY 34 • Definition 0 Y = (Y1; :::; Yn) is said to have a multivariate normal 0 distribution with mean vector µ = (µ1; :::; µn) and non-degenerate covariance matrix Σn×n if 1 1 f (y ; :::; y ) = exp{− (y − µ)0Σ−1(y − µ)g Y 1 n (2π)n=2jΣj1=2 2 CHAPTER 1 DISTRIBUTION THEORY 35 • Characteristic function ϕY (t) Z it0Y − n − 1 0 1 0 −1 = E[e ] = (2π) 2 jΣj 2 expfit y − (y − µ) Σ (y − µ)gdy 2 Z p 0 −1 0 −1 − n − 1 y Σ y −1 0 µ Σ µ = ( 2π) 2 jΣj 2 exp{− + (it + Σ µ) y − gdy 2 2 Z { exp{−µ0Σ−1µ/2g 1 = p exp − (y − Σit − µ)0Σ−1(y − Σit − µ) ( 2π)n=2jΣj1=2 2 } +(Σit + µ)0Σ−1(Σit + µ)=2 dy { } 1 = exp −µ0Σ−1µ/2 + (Σit + µ)0Σ−1(Σit + µ) 2 1 = expfit0µ − t0Σtg: 2 CHAPTER 1 DISTRIBUTION THEORY 36 • Conclusions { multivariate normal distribution is uniquely determined by µ and Σ { for standard multivariate normal distribution, 0 ϕX (t) = exp{−t t=2g { the moment generating function for Y is expft0µ + t0Σt=2g CHAPTER 1 DISTRIBUTION THEORY 37 • Linear transformation of normal r.v. Theorem 1.4 If Y = An×kXk×1 where X ∼ N(0;I) (standard multivariate normal distribution), then Y 's characteristic function is given by 0 k ϕY (t) = exp {−t Σt=2g ; t = (t1; :::; tn) 2 R and rank(Σ) = rank(A).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    62 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us