Electron - Positron Annihilation

Electron - Positron Annihilation

Electron - Positron Annihilation γ µ K Z − − − + + + − − − + + + − − − − + + + − − − + + + + W ν h π D. Schroeder, 29 October 2002 OUTLINE • Electron-positron storage rings • Detectors • Reaction examples e+e− −→ e+e− [Inventory of known particles] e+e− −→ µ+µ− e+e− −→ q q¯ e+e− −→ W +W − • The future:Linear colliders Electron-Positron Colliders Hamburg Novosibirsk 11 GeV 12 GeV 47 GeV Geneva 200 GeV Ithaca Tokyo Stanford 12 GeV 64 GeV 8 GeV 12 GeV 30 GeV 100 GeV Beijing 12 GeV 4 GeV Size (R) and Cost ($) of an e+e− Storage Ring βE4 $=αR + ( E = beam energy) R d $ βE4 Find minimum $: 0= = α − dR R2 β =⇒ R = E2, $=2 αβ E2 α SPEAR: E = 8 GeV, R = 40 m, $ = 5 million LEP: E = 200 GeV, R = 4.3 km, $ = 1 billion + − + − Example 1: e e −→ e e e− total momentum = 0 θ − total energy = 2E e e+ Probability(E,θ)=? e+ E-dependence follows from dimensional analysis: density = ρ− A density = ρ+ − + × 2 Probability = (ρ− ρ+ − + A) (something with units of length ) ¯h ¯hc When E m , the only relevant length is = e p E 1 =⇒ Probability ∝ E2 at SPEAR Augustin, et al., PRL 34, 233 (1975) 6000 5000 4000 Ecm = 4.8 GeV 3000 2000 Number of Counts 1000 Theory 0 −0.8 −0.40 0.40.8 cos θ Prediction for e+e− −→ e+e− event rate (H. J. Bhabha, 1935): event dσ e4 1 + cos4 θ 2 cos4 θ 1 + cos2 θ ∝ = 2 − 2 + rate dΩ 32π2E2 4 θ 2 θ 2 cm sin 2 sin 2 Interpretation of Bhabha’sformula (R. P. Feynman, 1949): − + e− e+ e e 2 = (const.) × + − e e+ e− e+ Each diagram representsa complex number that dependson E and θ. Each vertex representsa factor of the electron’scharge, e = −0.303. Feynman Rules (neglecting spin,h ¯ = c =1) p3 p4 · · eip3 x eip4 y e e xy · − d4q eiq (x y) − · 4 2 − · e ip1 x (2π) q e ip2 y p1 p2 Multiply pieces together, integrate over x and y ... Higher-Order Diagrams + ++ + + any charged particle! (“vacuum polarization”) Also: + + ++ More vertices =⇒ more factors of e =⇒ smaller value It Works! M. Derrick, et al., Phys. Rev. D34, 3286 (1986) 250 HRS Collaboration (SLAC) 200 Ecm = 29 GeV nb/sr) tree-level 2 150 no vacuum polarization full radiative corrections Ω (GeV 100 sdσ/d 50 0 −0.4− 0.2 0 0.2 0.4 0.6 cos θ THE PERIODIC TABLE Leptons Quarks (each in 3 “colors”) e νe d u 0.511 MeV < 0.000003 73 Particles like the electron µ νµ s c 106 < 0.2 120 1200 (fermions, spin 1/2) τ ντ b t 1777 < 20 4300 175,000 −1 0 −1/3 2/3 ← charge γ photon “electromagnetism” 0 Particles like gluon the photon g “strong interaction” (8 “colors”) 0 (bosons, spin 1) ± 0 W Z “weak interaction” 80,420 91,188 (Gravity is negligible.) + − + − Example 2: e e −→ µ µ Only one diagram: µ− µ+ 2 e4 = (const.) × 1 + cos2 θ E2 e− e+ (Same as third term in Bhabha formula, provided that E mµ.) + − Example 3: e e −→ qq¯ −→ hadrons 0 0 π K − π+ K u u¯ d¯ d s¯ s u u¯ 0 ↑ gluon d π d¯ ↑ 2 | | 3 e e− e+ For 10 GeV <Ecm < 40 GeV, e+e− → hadrons 1 2 2 2 1 2 2 2 1 2 =3× + + + + e+e− → µ+µ− 3 3 3 3 3 ↑ ↑↑↑↑↑ colors duscb R = σ(hadrons)/σ(µ+µ−) 7 J/ψ ψ(2S) Υ(1S, 2S, 3S) 6 5 4 b 3 c 2 1 d + u + s 0 345678910 203040 Ecm (GeV) − Example 3(b): e+e −→ Z0 −→ qq¯ q q¯ 0 1 Z 2 − 2 Ecm mZ e− e+ Higher-order diagrams turn ∞ into smooth resonance curve. 35 30 OPAL 25 20 15 10 Total Hadronic Cross-Section (nbarn) 5 0 87 88 89 90 91 92 93 94 95 96 Center-of-Mass Energy (GeV) + − + − Example 4: e e −→ W W − − W − W + W W + W W + ++γ Z0 νe e− e+ e− e+ e− e+ Requires Ecm > 2mW = 160 GeV 08/07/2001 LEP Preliminary 20 15 ] pb [ 10 Full theory no ZWW vertex 5 exchange 0 160 170 180 190 200 210 Ecm [GeV] • Direct measurement of mW can be compared to indirect measurements: − − µ u νµ ν¯e e W W − νµ d µ • Corrections from higher-order diagrams must be included, t especially: b • Results disagree, typically by ∼1%! • Simplest solution: new spin-0“Higgs” particle, mh ∼< 200 GeV h0 W (Also needed to avoid nonsensical predictions at E ∼> 1000 GeV) Looking for the Higgs Particle(s) • Tevatron (Fermilab, Chicago): pp¯, Ecm = 2000 GeV • Large Hadron Collider (CERN, Geneva): pp, Ecm =14, 000 GeV, 2007 Discovery likely! Detailed study difficult. + − • e e storage ring, Ecm = 500+ GeV? Too big, too expensive. • e+e− linear collider Z0 h0 h0 νe ν¯e Z0 WW e− e+ e− e+ The Next Linear Collider e+ e− 20 - 30 km Suggested Reading • Feynman, QED: The Strange Theory of Light and Matter • Barnett, et al., The Charm of Strange Quarks • Riordan, The Hunting of the Quark • ParticleAdventure.org • physics.weber.edu/schroeder/feynman/.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us