Machine Learning Applied to Fourteen Agricultural Datasets

Machine Learning Applied to Fourteen Agricultural Datasets

Machine Learning Applied to Fourteen Agricultural Datasets Kirsten Thomson Robert J. McQueen Machine Learning Group Department of Computer Science University of Waikato Research Report September, 1996 Table of Contents 1. INTRODUCTION............................................................................................................. 1 1.1 Machine Learning........................................................................................................ 1 1.2 The WEKA machine learning workbench.....................................................................2 1.3 Characteristics of the datasets ...................................................................................... 3 1.4 Classes and accuracy.................................................................................................... 3 1.5 WEKA Workbench functions and machine learning schemes used................................ 4 1.6 The results of the tests ................................................................................................. 4 2. APPLE BRUISING........................................................................................................... 6 2.1 Original research.......................................................................................................... 6 2.2 Machine learning..........................................................................................................6 2.3 Discussion of results.................................................................................................. 12 2.4 Conclusion................................................................................................................. 12 3. BULLS............................................................................................................................ 13 3.1 Original research........................................................................................................ 13 3.2 Machine learning........................................................................................................13 3.3 Discussion of results.................................................................................................. 15 3.4 Conclusion................................................................................................................. 15 4. EUCALYPTUS SOIL CONSERVATION ...................................................................... 17 4.1 Original research........................................................................................................ 17 4.2 Machine learning........................................................................................................17 4.3 Discussion of results.................................................................................................. 25 4.4 Conclusion................................................................................................................. 25 5. GRASS GRUBS AND DAMAGE RANKING................................................................ 30 5.1 Original research........................................................................................................ 30 5.2 Machine learning........................................................................................................30 5.3 Discussion of results.................................................................................................. 33 5.4 Conclusion................................................................................................................. 34 6. GRASS GRUBS AND RAINFALL................................................................................. 38 6.1 Original research........................................................................................................ 38 6.2 Machine learning........................................................................................................39 6.3 Discussion of results.................................................................................................. 41 6.4 Conclusion................................................................................................................. 42 7.GROWER QUESTIONNAIRE ........................................................................................ 46 7.1 Original research........................................................................................................ 46 7.2 Machine learning........................................................................................................46 7.3 Discussion of results.................................................................................................. 49 7.4 Conclusion................................................................................................................. 49 8. PASTURE PRODUCTION............................................................................................. 51 8.1 Original research........................................................................................................ 51 8.2 Machine learning........................................................................................................51 8.3 Discussion of results.................................................................................................. 55 8.4 Conclusion................................................................................................................. 55 9. PEA SEED COLOUR ..................................................................................................... 58 9.1 Original research........................................................................................................ 58 9.2 Machine learning........................................................................................................58 9.3 Conclusion................................................................................................................. 61 i 10. SLUGS.......................................................................................................................... 63 10.1 Original research...................................................................................................... 63 10.2 Machine learning...................................................................................................... 63 10.3 Discussion of results................................................................................................ 68 10.4 Conclusion............................................................................................................... 68 11. SQUASH HARVEST.................................................................................................... 71 11.1 Original research...................................................................................................... 71 11.2 Machine learning...................................................................................................... 71 11.3 Conclusion............................................................................................................... 78 12. VALLEY CATEGORIES.............................................................................................. 83 12.1 Original research...................................................................................................... 83 12.2 Machine learning...................................................................................................... 83 12.3 Discussion of results................................................................................................ 87 12.4 Conclusion............................................................................................................... 87 13. VENISON BRUISING.................................................................................................. 89 13.1 Original research...................................................................................................... 89 13.2 Machine learning...................................................................................................... 89 13.3 Discussion of results................................................................................................ 95 13.4 Conclusion............................................................................................................... 95 14. WASP NESTS .............................................................................................................. 97 14.1 Original research...................................................................................................... 97 14.2 Machine learning...................................................................................................... 97 14.3 Discussion of results.............................................................................................. 102 14.4 Conclusion............................................................................................................. 102 15. WHITE CLOVER PERSISTENCE TRIALS............................................................... 103 15.1 Original research.................................................................................................... 103 15.2 Machine learning.................................................................................................... 103 15.3 Discussion of results.............................................................................................. 111 15.4 Conclusion............................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    117 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us