Thermosyphon Flooding in Reduced Gravity Environments

Thermosyphon Flooding in Reduced Gravity Environments

THERMOSYPHON FLOODING IN REDUCED GRAVITY ENVIRONMENTS by Marc Andrew Gibson Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Advisor: Dr. Joseph M. Prahl Department of Mechanical and Aerospace Engineering Case Western Reserve University January 2013 Case Western Reserve University School of Graduate Studies We hereby approve the thesis of __________________Marc Andrew Gibson___________________ candidate for the Master of Science degree*. (signed) ___________Dr. Joseph Prahl_______________________ (chair of the committee) _________________Dr. Yasuhiro Kamotani_________________ _ _________________Dr. Paul Barnhart_______________________ _________________Lee Mason____________________________ (date)__11/19/2012____ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Abstract ...................................................................................................................................... 9 Chapter 1: Introduction .......................................................................................................... 10 1.1 Heat Rejection of Nuclear Power Systems for Planetary Surface Applications. ............................... 10 1.2 Themosyphons, Heat Pipes, and the effects of Gravity ................................................................... 15 1.3 Thermosyphon limits ....................................................................................................................... 17 1.3.1 The Flooding Limit Literature Survey ......................................................................................... 17 1.3.2 One Dimensional Model of the Flooding Limit .......................................................................... 24 1.3.3 Other thermosyphon heat transfer limitations ............................................................................ 26 Chapter 2: Experiment Design and Hardware ....................................................................... 29 2.1 Reduced Gravity Testing and Vehicles ............................................................................................. 29 2.2 Experiment Design ........................................................................................................................... 30 2.3 Instrumentation ................................................................................................................................ 36 Chapter 3: Ground Testing in Earth’s gravity ......................................................................... 39 3.1 Test Methods and Procedures ......................................................................................................... 39 3.2 Data Analysis .................................................................................................................................... 40 Chapter 4: Reduced Gravity Testing ....................................................................................... 47 4.1 2011 and 2012 Flight Campaigns ..................................................................................................... 47 4.2 Reduced Gravity Data Analysis ........................................................................................................ 51 Chapter 5: Data Correlation..................................................................................................... 55 5.1 Non-dimensional Analysis and Data Correlation .............................................................................. 55 5.2 Conclusion ......................................................................................................................................... 61 Appendix A .............................................................................................................................. 63 One Dimensional Analysis ....................................................................................................................... 63 Appendix B .............................................................................................................................. 70 Error Analysis .......................................................................................................................................... 70 Appendix C .............................................................................................................................. 78 Test Equipment Data Package ................................................................................................................ 78 2 List of Tables Table 2.1 Instrumentation List ................................................................................................ 37 Table 2.2 Thermocouple ID and location ............................................................................... 37 Table B.1 Lunar parabolic flight data and statistical analysis ................................................ 76 Table B.2 1g Laboratory data and statistical analysis ............................................................. 77 3 List of Figures Figure 1.1 Notional 40kWe Fission Surface Power System .................................................... 11 Figure 1.2 Photograph and infrared image of a 1.7m x 2.7m full scale fission surface power radiator. The IR image shows 16 thermosyphons isothermally spreading heat to the radiator facesheet. ................................................................................................................................. 14 Figure 1.3 Illustration of a fully wicked heat pipe ................................................................... 15 Figure 1.4 Illustration of Condenser Flooding ....................................................................... 18 Figure 1.5 Faghri and Tien and Chung correlations of the thermosyphon flooding limit for earth and lunar gravity levels. .................................................................................................. 22 Figure 1.6 Expected thermosyphon performance of a Fission Power System on the lunar surface vs. current thermosyphon flooding models from Faghri and Tien and Chung. ........ 23 Figure 1.7 One dimensional Diagram of a thermosyphon ...................................................... 25 Figure 1.8 Thermosyphon heat transfer limits using experiment thermosyphon geometry .. 28 Figure 2.1 Thermosyphon Components .................................................................................. 32 Figure 2.2 Top: National Instruments PXI Data System and electrical controls; Bottom: Screen shot of flight software showing critical information and controls for all twelve thermosyphons ........................................................................................................................ 34 Figure 2.3 Thermosyphon flooding experiment payload ....................................................... 35 Figure 2.4 Thermocouple Location Diagram ........................................................................ 38 Figure 3.1 Graphical representation of two different methods used to approach the flooding limit .......................................................................................................................................... 39 Figure 3.2 Typical 1-g flooding event using the constant power method. ............................ 41 Figure 3.3 Initial 1g test data showing scattered results caused by fluid charge differences 42 Figure 3.4 Initial individual thermosyphon flooding limits showing dissimilar results during fluid charge investigation ........................................................................................................ 43 Figure 3.5 Effect of fluid charge on thermosyphon flooding limit ......................................... 44 Figure 3.6 Flooding limit of correctly filled thermosyphons using 2.0 g of water. ................ 45 Figure 4.1 G-Force One aircraft and 2011 research teams. ..................................................... 47 Figure 4.2 Pre-flight test readiness review at the reduced gravity office, Ellington Field. ... 49 Figure 4.3 Thermosyphon Flooding Experiment .................................................................. 50 Figure 4.4 Flooding event data of thermosyphon number 8 taken during Martian and lunar gravity parabolas in Sept. 2011 ................................................................................................. 52 Figure 4.5 “First parabola flood” depicting 3 key events. 1) Lunar gravity forces decrease mass flow, heater temperature increases, upper evaporator temperature decreases. 2) Flooding occurs and heat transfer is stalled, slope change shows increase in heater temperature rate, no sign of recovery. 3) Hyper-g forces flooded fluid back to evaporator and cools heater until next parabola. ............................................................................................. 53 4 Figure 4.6 Parabolic flooding data during Lunar gravity compared to predictive models .... 54 Figure 5.1 Non-dimensional parameter q from the original Faghri model vs. non- dimensional q test data at 1g, top, and Lunar gravity, bottom. .............................................. 56 Figure 5.2 New non-dimensional Flooding Correlation “q” showing gravity independence ................................................................................................................................................. 57 Figure 5.3 New Thermosyphon Flooding Correlation vs. 1g Test Data ...............................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    141 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us