Cohen-Macaulay Modules Over Gorenstein Local Rings

Cohen-Macaulay Modules Over Gorenstein Local Rings

COHEN{MACAULAY MODULES OVER GORENSTEIN LOCAL RINGS RYO TAKAHASHI Contents Introduction 1 1. Associated primes 1 2. Depth 3 3. Krull dimension 6 4. Cohen{Macaulay rings and Gorenstein rings 9 Appendix A. Proof of Theorem 1.12 11 Appendix B. Proof of Theorem 4.8 13 References 17 Introduction Goal. The structure theorem of (maximal) Cohen{Macaulay modules over commutative Gorenstein local rings Throughout. • (R : a commutative Noetherian ring with 1 A = k[[X; Y ]]=(XY ) • k : a field B = k[[X; Y ]]=(X2;XY ) • x := X; y := Y 1. Associated primes Def 1.1. Let I ( R be an ideal of R (1) I is a maximal ideal if there exists no ideal J of R with I ( J ( R (2) I is a prime ideal if (ab 2 I ) a 2 I or b 2 I) (3) Spec R := fPrime ideals of Rg Ex 1.2. Spec A = f(x); (y); (x; y)g; Spec B = f(x); (x; y)g Prop 1.3. I ⊆ R an ideal (1) I is prime iff R=I is an integral domain (2) I is maximal iff R=I is a field 2010 Mathematics Subject Classification. 13C14, 13C15, 13D07, 13H10. Key words and phrases. Associated prime, Cohen{Macaulay module, Cohen{Macaulay ring, Ext module, Gorenstein ring, Krull dimension. 1 2 RYO TAKAHASHI (3) Every maximal ideal is prime Throughout the rest of this section, let M be an R-module. Def 1.4. p 2 Spec R is an associated prime of M if 9 x 2 M s.t p = ann(x) AssR M := fAssociated primes of Mg Ex 1.5. AssA A = f(x); (y)g; AssB B = f(x); (x; y)g Prop 1.6. TFAE for p 2 Spec R (1) p 2 AssR M (2) 9 f : R=p ! M an injective homomorphism Proof. (1) ) (2) 9 x 2 M s.t p = ann(x) Define f : R=p ! M by f(a) = ax (2) ) (1) x := f(1) 2 M p = ann(x) ■ Prop 1.7. maxfann(x) j 0 =6 x 2 Mg ⊆ AssR M Proof. p := ann(x) ETS p 2 Spec R x =6 0 ) 1 2= p ) p ( R Suppose a; b 2 R, ab 2 p, a2 = p. Then abx = 0 ) p = ann(x) ( ann(bx)(a 2 ann(bx) − p) The maximality of p shows ann(bx) = R ) bx = 0 ) x 2 p ■ Cor 1.8. M =6 0 () AssR M =6 ; Proof. (() Trivial ()) As R is Noetherian, LHS in Prop 1.7 is nonempty. ■ Def 1.9. x 2 R, M an R-module (1) x is a zerodivisor (ZD) on M if 0 =6 9 m 2 M s.t xm = 0 (2) x is a nonzerodivisor (NZD) on M if x is not a ZD on M Cor 1.10. [ fZDs on Mg = p p2Ass M COHEN{MACAULAY MODULES OVER GORENSTEIN LOCAL RINGS 3 Proof. S ⊇ 2 ( ) Let a p2Ass M p ) a 2 9 p 2 Ass M ) 9 x 2 M s.t p = ann(x) ) ax = 0, x =6 0 ) a is a ZD on M (⊆) Let a 2 R be a ZD on M ) 0 =6 9 z 2 M s.t az = 0 ) a 2 ann(z) ann(z) ⊆ 9 q 2 maxfann(x) j 0 =6 x 2 Mg ⊆ Ass M by Prop 1.7 S ) 2 2 ) 2 ■ a q Ass M a p2Ass M p Ex 1.11. (1) fZDs on Ag = (x) [ (y) ) x − y is a NZD on A (2) fZDs on Bg = (x; y) ) All nonunits of B are ZDs on B Thm 1.12. If M is finitely generated, then # AssR M < 1 Sketch. (Details: Appendix A) (1) 9 0 = M0 ( M1 ( ··· ( Mn = M submodules s.t. ∼ Mi=Mi−1 = R=pi; pi 2 Spec R (2) If 0 ! X ! Y ! Z ! 0 is an exact seq of R-modules, then Ass Y ⊆ Ass X [ Ass Z (3) AssR(R=p) = fpg 8 p 2 Spec R 0 ! Mi−1 ! Mi ! R=pi ! 0 Ass Mi ⊆ Ass Mi−1 [ Ass R=pi = Ass Mi−1 [ fpig Ass M ⊆ fp1;:::; png ■ 2. Depth Def 2.1. R is local if R has a unique maximal ideal m k := R=m is the residue field of R We say (R; m; k) is a local ring Ex 2.2. (1) (A; (x; y)A; k) is local (2) (B; (x; y)B; k) is local Def 2.3. (R; m; k): local M: a f.g R-mod The depth of M is: f > j i 6 g depthR M = inf i 0 ExtR(k; M) = 0 Prop 2.4. (R; m; k): local 0 ! L ! M ! N ! 0 an exact seq of f.g R-modules Then (1) depth L > inffdepth M; depth N + 1g 4 RYO TAKAHASHI (2) depth M > inffdepth L; depth Ng (3) depth N > inffdepth M; depth L − 1g Proof. (1) n := inffdepth M; depth N + 1g ) depth M > n, depth N > n − 1 Extn−2(k; N) −−−! Extn−1(k; L) −−−! Extn−1(k; M) −−−! Extn−1(k; N) −−−! Extn(k; L) −−−! Extn(k; M) −−−! Extn(k; N) ) depth L > n (2)(3) Similar to (1) ■ Cor 2.5 (Depth Lemma). (R; m; k): local 0 ! L ! M ! N ! 0 an exact seq of f.g R-modules depth M > depth N =) depth L = depth N + 1 Proof. depth M > depth N + 1 By Prop 2.4(1), depth L > inffdepth M; depth N + 1g = depth N + 1 Assume depth L > depth N + 1. Then by Prop 2.4(3) depth N > inffdepth M; depth L − 1g > depth N This contradiction shows depth L = depth N + 1 ■ Prop 2.6. (R; m; k): local M: a f.g R-mod 2 () m AssR M depthR M = 0 Proof. ()) Prop 1.6 ) k = R=m ,! M ) HomR(k; M) =6 0 (() HomR(k; M) =6 0 ) 9 f : k ! M, f(1) = x =6 0 a =6 0 ) a 2= m ) a 2 R× ) ax =6 0 ) f is injective Prop 1.6 implies m 2 Ass M ■ 2 Ex 2.7. (1) depthA A > 0 since (x; y) = AssA A 2 (2) depthB B = 0 since (x; y) AssB B Lem 2.8 (Prime Avoidance). I ⊆ R an ideal p1;:::; pn 2 Spec R I ⊆ p1 [···[ pn =) I ⊆ p` (9 `) Proof. Induction on n n = 1 Trivial n > 2 May assume @ inclusion relation among p1;:::; pn Suppose I * pi (8 i) Ind hyp ) I * p1 [···[ pn−1 ) 9 x 2 I − (p1 [···[ pn−1) COHEN{MACAULAY MODULES OVER GORENSTEIN LOCAL RINGS 5 As I ⊆ (p1 [···[ pn−1) [ pn, we have x 2 pn 9 y 2 I − pn; 9 zi 2 pi − pn (1 6 8 i 6 n − 1); w := x + yz1 ··· zn−1 (1) x; y 2 I ) w 2 I ⊆ (p1 [···[ pn−1) [ pn (2) x2 = p1 [···[ pn−1; z1 2 p1 ) w2 = p1 [···[ pn−1 (3) x 2 pn; y; z1; : : : ; zn−1 2= pn ) w2 = pn (1), (2), (3) yield a contradiction ■ Prop 2.9. (R; m; k) local M a f.g R-mod TFAE (1) depthR M > 0 (2) 9 x 2 m a NZD on M Proof. By Prop 2.6, depth M > 0 , m 2= Ass M (2) ) (1) S ) 2 ) 2 8 2 Cor 1.10 x = p2Ass M p x = p Ass M As x 2 m, we must have m 2= Ass M (1) ) (2) m 2= Ass M ) m * 8 p 2 Ass M Thm 1.12 implies # Ass M < 1 Lem 2.8 and Cor 1.10 yield [ m * p = fZDs on Mg p2Ass M ) 9 x 2 m a NZD on M ■ Ex( 2.10. depth A > 0 (1) − (x y is a NZD on A depth B = 0 (2) @ NZD on B in the maximal ideal of B Lem 2.11. M; N: R-modules x 2 ann N: a NZD on R; M Then i+1 ∼ i 8 2 Z ExtR (N; M) = ExtR=(x)(N; M=xM)( i ) i i+1 − Proof. T := ExtR ( ;M) ETS: (1) 8 0 ! X ! Y ! Z ! 0 exact seq of R=(x)-modules 9 0 ! T 0(Z) ! T 0(Y ) ! T 0(X) ! T 1(Z) !··· exact 0 ∼ (2) T = HomR=(x)(−; M=xM) (3) T i(P ) = 0 (8 P projective R-mod, 8 i > 0) by Axioms for (contravariant) Ext [5, Theorem 6.64] ■ Prop 2.12. (R; m; k) local M a f.g R-mod x 2 m a NZD on M 6 RYO TAKAHASHI − (1) depthR M=xM = depthR M 1 − (2) If x a NZD on R, then depthR=(x) M=xM = depthR M 1 Proof. (1) t := depthR M From the exact seq 0 ! M −!x M ! M=xM ! 0 we get an exact seq −−−! t−2 −−−!x t−2 −−−! t−2 ExtR (k; M) ExtR (k; M) ExtR (k; M=xM) 0 −−−! t−1 −−−!x t−1 −−−! t−1 ExtR (k; M) ExtR (k; M) ExtR (k; M=xM) 0 −−−! t −−−!x t −−−! t ExtR(k; M) ExtR(k; M) ExtR(k; M=xM) ( 0 − Ext<(t 1)(k; M=xM) = 0; ) R t−1 ∼ t 6 ExtR (k; M=xM) = ExtR(k; M) = 0 ) − depthR M=xM = t 1 (2) Lem 2.11 implies i ∼ i+1 ExtR=(x)(k; M=xM) = ExtR (k; M) for i 2 Z ■ Ex 2.13. x − y is a NZD on A By Prop 2.12, − − depthA=(x−y) A=(x y) = depthA A 1 ∼ A=(x − y) = k[X]=(X2) k ,! k[X]=(X2), 1 7! x ) − ) depthA=(x−y) A=(x y) = 0 depthA A = 1 3.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us