Leewellerthesis.Pdf

Leewellerthesis.Pdf

Durham E-Theses Absolute Absorption and Dispersion in a Thermal Rb Vapour at High Densities and High Magnetic Fields. WELLER, LEE How to cite: WELLER, LEE (2013) Absolute Absorption and Dispersion in a Thermal Rb Vapour at High Densities and High Magnetic Fields., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7747/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Absolute Absorption and Dispersion in a Thermal Rb Vapour at High Densities and High Magnetic Fields. Lee Weller Abstract This thesis presents a comparative study of the measured and calculated ab- solute absorption and dispersion properties of the Rb D lines through a dense thermal vapour in the absence and presence of an applied magnetic field. A detailed theoretical model valid in the weak-probe regime is calculated. The model uses a matrix representation of the atomic Hamiltonian including the magnetic field interaction for Rb in the completely uncoupled basis. Numer- ical diagonalisation allows the frequency detunings and transition strengths to be calculated. The lineshape of each transition is modelled as a Voigt profile, a convolution of the inhomogeneous and homogeneous profiles. The medium’s susceptibility is found by summing over all the electric-dipole- allowed transitions. For dense thermal vapours a modification to the homo- geneous linewidth of each transition, which grows linearly with the number density of atoms, arises due to resonant dipole-dipole interactions between identical atoms in superpositions of the ground and excited terms. In the presence of an applied magnetic field we investigate the Stokes parameters of light propagating through a dense thermal vapour. For fields larger than 0.33 T we enter the hyperfine Paschen-Back regime on the Rb D lines. We present a compact optical isolator based on an atomic vapour, exploiting the spectral region of high transmission and large dispersion where we would normally expect absorption on the Rb D lines. Frequency up-conversion is shown in the fluorescence measurements over the visible and near infra-red regions for strong excitation. Low density transfer arises due to the energy- pooling effect between two identical atoms in their first excited terms. At high densities resonant dipole-dipole interactions give rise to a threshold for the energy transfer. We characterise the threshold behaviour with increasing number density. Absolute Absorption and Dispersion in a Thermal Rb Vapour at High Densities and High Magnetic Fields. Lee Weller A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Physics Durham University August 9, 2013 Contents Page Abstract i Title ii Contents iii List of Figures viii List of Tables xi Declaration xii Acknowledgements xiv 1 Introduction 1 1.1 Motivation............................. 1 1.2 Atom-lightinteractions . 1 1.3 Magnetic-fieldinteraction . 3 1.4 Opticalisolators. 4 1.5 Cooperativeeffects . 5 1.6 Thesissummary.......................... 6 1.7 Publications............................ 8 1.8 Authorcontributions . 9 I Absolute Absorption and Dispersion 10 2 Model for the absolute susceptibility 11 2.1 Introduction............................ 12 2.2 Susceptibilityofatwo-levelatom . 12 2.2.1 Two-levelatom . 12 2.2.2 Thesusceptibility. 14 2.3 Lineshapefactor ......................... 15 2.3.1 Lorentzian and dispersion lineshapes . 16 2.3.2 Gaussianlineshape . 17 iii Contents iv 2.3.3 Voigtlineshape . 19 2.4 Hamiltonianforamany-levelatom . 20 2.4.1 Atomicstructure . 20 2.4.2 Matrixrepresentation. 26 2.5 Usingthematrixrepresentation . 32 2.5.1 Relativeline-strengthfactors. 32 2.5.2 Transitionfrequencies . 34 2.5.3 Absorption and dispersion coefficients . 35 2.6 Experimentalmethodsandresults. 39 2.6.1 Experimentalapparatus . 39 2.6.2 Comparingtheoryandexperiment . 39 2.7 Discussion ............................. 42 3 Including resonant dipole-dipole interactions 43 3.1 Introduction............................ 44 3.2 Resonantdipole-dipoleinteractions . 44 3.2.1 Formoftheinteraction. 44 3.2.2 Contributiontothesusceptibility . 47 3.2.3 Impactandquasi-staticregimes . 48 3.3 Theself-broadeningparameter. 49 3.3.1 Calculating the self-broadening parameter . 49 3.3.2 TotalLorentzianlinewidth . 51 3.3.3 Homogeneous and inhomogeneous FWHM . 52 3.4 Experimentalmethodsandresults. 53 3.4.1 Experimentalapparatus . 53 3.4.2 2mmcellheater ..................... 54 3.4.3 Comparingtheoryandexperiment . 55 3.5 Modifiedformofthesusceptibility. 56 3.5.1 Modified total homogeneous linewidth . 57 3.5.2 Measuring the self-broadening parameter . 58 3.6 Shiftsandsaturation . 60 3.6.1 Lorentz-Lorenz and collisional shifts. 60 3.6.2 Saturation of the resonance susceptibility . 61 3.7 Discussion ............................. 62 4 Including the magnetic field interaction 63 4.1 Introduction............................ 64 4.2 AtomicHamiltonian . 64 4.3 Matrix representation of HˆZ ................... 66 2 4.3.1 5 S1/2 matrix ....................... 67 2 4.3.2 5 P1/2 matrix ....................... 72 4.3.3 Relative line-strengths and transition frequencies ... 74 4.4 Variousmagneticregimes. 77 4.4.1 HLZandHPBregimes . 77 4.4.2 FPBregime ........................ 79 Contents v 4.4.3 Summary ......................... 79 4.5 Experimentalmethods . 80 4.5.1 Permanentneodymiummagnets . 81 4.5.2 Aluminummagnetholder . 83 4.5.3 Vapourcells........................ 86 4.5.4 Details for moderate magnetic fields. 88 4.5.5 Detailsforlargemagneticfields . 90 4.5.6 Detailsforopticalisolation. 92 4.6 Discussion ............................. 93 5 Measuring the Stokes parameters of light 94 5.1 Introduction............................ 95 5.2 Comparing theory and experiment for moderate fields . 95 5.2.1 Asafunctionofnumberdensity . 95 5.2.2 Asafunctionofmagnetseparation . 98 5.3 Stokesparameters. 101 5.3.1 Circularlyanisotropicmedia . 101 5.3.2 StokesTheory. 103 5.3.3 Results........................... 104 5.4 ThePoincar´erepresentation . 107 5.4.1 Poincar´esphere . 107 5.4.2 Measured and calculated Poincar´esphere . 108 5.5 Discussion ............................. 109 6 The hyperfine Paschen-Back (HPB) regime 110 6.1 Introduction............................ 111 6.2 Absorption and dispersion in the HPB regime . 112 6.2.1 AbsorptionintheHPBregime. 112 6.2.2 DispersionintheHPBregime . 114 6.3 Originoftheweaktransitions . 116 6.3.1 Relativeline-strengthfactors. 116 6.3.2 Transitionfrequencies . 120 6.4 OpticalisolatorintheHPBregime . 120 6.4.1 Propertiesofthemedium . 120 6.4.2 Theoretical and experimental rotation . 122 6.4.3 Characteristics for our optical isolator . 126 6.4.4 Idealparameters . 128 6.5 Discussion ............................. 129 II Cooperative effects 130 7 Cooperative enhancement of energy transfer 131 7.1 Introduction............................ 132 7.2 Experimentalmethods . 132 Contents vi 7.2.1 Method .......................... 132 7.2.2 Confocalmicroscopy . 134 7.2.3 Side-imaging. 134 7.3 Energylevelsandfluorescencespectra. 135 7.4 Theoreticalconsiderations . 138 7.4.1 Potential-energycurves. 138 7.4.2 Kinetictheory. 139 7.4.3 Enhancementintheelectricfield . 144 7.5 Dependencieswithnumberdensity . 145 7.5.1 Confocalmicroscopyresults . 145 7.5.2 Side-imagingresults . 148 7.6 Discussion ............................. 150 8 Conclusions & Outlook 151 8.1 Conclusion............................. 151 8.2 Outlook .............................. 152 Appendices 152 A Rubidium atomic & spectroscopic data 153 A.1 Vapourpressureandnumberdensity . 153 A.2 Atomicdata............................ 154 A.3 Spectroscopicdata . 155 B Matrix calculations 156 B.1 Lˆ Sˆ matrix............................ 156 B.2 Iˆ ·Jˆ matrix ............................ 160 B.3 π ·transitions............................ 163 C Calibration for a single transmission plot 167 C.1 Scalingthefrequencyaxis . 167 C.1.1 Fabry-Perotetalon . 167 C.1.2 Hyperfine/saturated absorption spectroscopy . 169 C.2 Renormalisingthedata. 171 D Extracting optimised parameters and their uncertainties 173 D.1 Errorsfromtheoscilloscope . 173 D.2 Pythonfitting........................... 174 D.3 Covariancematrix . 174 E Breit-Rabi diagrams 176 E.1 Breit-Rabi diagrams for 85Rb .................. 176 E.2 Breit-Rabi diagrams for 87Rb .................. 178 Contents vii F Permanent neodymium magnets 180 F.1 Magneticfieldprofile . 180 F.2 Analyticrotationangle . 183 F.3 Idealparametersforanopticalisolator . 184 Bibliography 185 List of Figures Figure Page 2.1 Two-levelquantumsystem. 13 2.2 Normalised steady-state susceptibility. 17 2.3 Hyperfinestructureandintervals. 24 2.4 Matrixforthe5Pterm. 30 87 2.5 Relative line-strengths for F =1 F ′ = 1 transition in Rb. 34 2.6 Calculated transmission plots for→ a 75 mm cell. 38 2.7 Apparatus for weak beam measurements for a 75 mm cell. 40 2.8 Experimentandtheoryfora75mmcell. 41 3.1

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    213 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us