Lecture 07: Mean-Variance Analysis & Variance Analysis & Capital Asset

Lecture 07: Mean-Variance Analysis & Variance Analysis & Capital Asset

Fin 501: Asset Pricing Lecture 07: MeanMean--VarianceVariance Analysis & Capital Asset Pricing Model (CAPM) Prof. Markus K. Brunnermeier MeanMean--VarianceVariance Analysis and CAPM Slide 0707--11 Fin 501: Asset Pricing OiOverview 1. Simple CAPM with quadratic utility functions (derived from statestate--priceprice beta model) 2. MeanMean--variancevariance preferences – Portfolio Theory – CAPM (intuition) 3. CAPM – Projections – Pricing Kernel and Expectation Kernel MeanMean--VarianceVariance Analysis and CAPM Slide 0707--22 Fin 501: Asset Pricing RllSttRecall Statee--prpriBtice Beta mod dlel Recall: E[Rh] - Rf = βh E[R*- Rf] where βh := Cov[R*,Rh] / Var[R*] very general – but what is R* in reality? MeanMean--VarianceVariance Analysis and CAPM Slide 0707--33 Fin 501: Asset Pricing Simple CAPM with Quadratic Expected Utility 1. All agents are identical • Expected utility U(x 0, x1)=) = ∑s πs u(x0, xs) ⇒ m= ∂1u/E[u / E[∂0u] 2 • Quadratic u(x0,x1)=v0(x0) - (x1- α) ⇒ ∂1u = [-2(x111,1- α),…, -2(xS1S,1- α)] •E[Rh] – Rf = - Cov[m,Rh] / E[m] f h = -R Cov[∂1u, R ] / E[∂0u] f h = -R Cov[-2(x1- α), R ]/E[] / E[∂0u] f h = R 2Cov[x1,R ] / E[∂0u] • Also holds for market portfolio m f f m •E[R] – R = R 2Cov[x1,R ]/E[∂0u] ⇒ MeanMean--VarianceVariance Analysis and CAPM Slide 0707--44 Fin 501: Asset Pricing Simple CAPM with Quadratic Expected Utility 2. Homogenous agents + Exchange economy m ⇒ x1 = agg. enddiflldihdowment and is perfectly correlated with R E[E[RRh]=]=RRf + βh {E[{E[RRm]]--RRf} Market Security Line * f M f N.B.: R =R (a+b1R )/(a+b1R ) in this case (where b1<0)! MeanMean--VarianceVariance Analysis and CAPM Slide 0707--55 Fin 501: Asset Pricing OiOverview 1. Simple CAPM with quadratic utility functions (derived from state-state-priceprice beta model) 2. MeanMean--variancevariance analysis – Portfolio Theory (Port fo lio f ronti er, effi ci ent f ronti er, …) – CAPM (Intuition) 3. CAPM – Projections – PPiiricing K erne l and dE Expectati on K ernel MeanMean--VarianceVariance Analysis and CAPM Slide 0707--66 Fin 501: Asset Pricing Deeo:efinition: Meanan--VVceoceariance Dominance & Efficient Frontier • Asset (portfolio) A mean-variance dominates asset (portfolio) B if μA ≥ μB and σA < σΒ or if μA>μBwhile σA ≤σB. • Effici ent f ronti er: lifllloci of all non-ditddominated portfolios in the mean-standard deviation space. BBy de finiti on, no (“ rati onal”) mean-variance investor would choose to hold a portfolio not locat ed on th e effi ci ent ftifrontier. MeanMean--VarianceVariance Analysis and CAPM Slide 0707--77 Fin 501: Asset Pricing EdPfliR&ViExpected Portfolio Returns & Variance • Expected returns (linear) hj μp := E[rp] = wj μj , where each wj = hj j •Variance P 2 2 σ1 σ12 w1 σp := V ar[rp] = w0V w = (w1 w2) σ σ2 w µ 21 2 ¶ µ 2 ¶ 2 2 w1 =(w1σ1 + w2σ21 w1σ12 + w2σ2) w µ 2 ¶ 2 2 2 2 = w1σ1 + w2σ2 +2w1w2σ12 ≥ 0 since σ12 ≤−σ1σ2. recall that correlation coefficient ∈ [-1,1] MeanMean--VarianceVariance Analysis and CAPM Slide 0707--88 Fin 501: Asset Pricing Illust rati on of 2 A sse t Case • For certain weights: w1 and (1-w1) μp = w1 E[r1]](+ (1-w1))[ E[r2] 2 2 2 2 2 σ p = w1 σ1 + (1-w1) σ2 + 2 w1(1-w1)σ1 σ2 ρ1,2 2 (Sppyecify σ p and one gggets weights and μp’s) • Special cases [w1 to obtain certain σR] – ρ1,2 = 1 ⇒ w1 = (+/-σp – σ2)/() / (σ1 – σ2) – ρ1,2 = -1 ⇒ w1 = (+/- σp + σ2) / (σ1 + σ2) MeanMean--VarianceVariance Analysis and CAPM Slide 0707--99 Fin 501: Asset Pricing For ρ = 1: σp = |w1σ1 +(1− w1)σ2| σp σ2 1,2 Hence, w1 = ±σ −σ 1− 2 μp = w1μ1 +(1− w1)μ2 E[r2] μp E[r1] σ1 σp σ2 Lower part with … is irrelevant The Efficient Frontier: Two Perfectly Correlated Risky Assets MeanMean--VarianceVariance Analysis and CAPM Slide 0707--1010 Fin 501: Asset Pricing σ +σ For ρ = -1:σp = |w1σ1 − (1 − w1)σ2| Hence, w = ± p 2 1,2 1 σ1+σ2 μp = w1μ1 +(1− w1)μ2 E[E[r ] 2 μ μ slope: 2− 1 σ σ1+σ2 p σ2 σ1 σ +σ μ1 + σ +σ μ2 μ μ 1 2 1 2 slope: − 2− 1 σ σ1+σ2 p E[r1] σ1 σ2 Efficient Frontier: Two Perfectly Negative Correlated Risky Assets MeanMean--VarianceVariance Analysis and CAPM Slide 0707--1111 Fin 501: Asset Pricing For -1 < ρ1,2 < 1: E[r2] E[r1] σ1 σ2 Efficient Frontier: Two Imperfectly Correlated Risky Assets MeanMean--VarianceVariance Analysis and CAPM Slide 0707--1212 Fin 501: Asset Pricing For σ1 =0= 0 E[r2] μp E[r1] σ1 σp σ2 The Efficient Frontier: One Risky and One Risk Free Asset MeanMean--VarianceVariance Analysis and CAPM Slide 0707--1313 Fin 501: Asset Pricing Effici ent f ronti er wi th n ri sk y assets • A frontier portfolio is one which displays minimum variance among all feasible portfolios with the same expected portfolio E[r] return. 1 min wTVw w 2 T N σ λ s.t. w e = E ⎛ ~ ⎞ () ⎜ ∑ wiE( ri ) = E⎟ ⎝ i=1 ⎠ N T ⎛ ⎞ ()γ w 1 = 1 ⎜ ∑ wi = 1⎟ ⎝ i=1 ⎠ Slide 0707--1414 Fin 501: Asset Pricing ∂ = Vw λe γ1=0 ∂wL − − ∂ = E wT e = 0 ∂λL − ∂ =1 wT 1=0 ∂Lγ − The first FOC can be written as: Vwp = λe + γ1or 1 1 wp = λV − e + γV − 1 T T 1 T 1 e wp = λ(e V − e) + γ(e V − 1) Slide 0707--1515 Fin 501: Asset Pricing T T NiNoting t hat e wp = w pe, usihfifhing the first foc, the second df foc can be written as T T 1 T 1 E[r˜p] = e wp = λ (e V − e) +γ (e V − 1) :=B =:A pre-multiplying first foc with | 1 { (instead z } of e |T) yields{z } T T T 1 T 1 1 wp = wp 1=λ(1 V − e)+γ(1 V − 1) = 1 T 1 T 1 1=λ (1 V − e) +γ (1 V − 1) =:A =:C Solving| both{z equations} for| λ and{z γ } CE A B AE λ = D− and γ = −D where D = BC A2. − Slide 0707--1616 Fin 501: Asset Pricing -1 -1 Hence, wp = λ V e + γ V 1 becomes CE − A B − AE w = V−1e + V−11 p D D (vector) (vector) λ (scalar) γ (scalar) 1 1 = [B(V−11)− A(V−1e)]+ [C(V−1e)− A(V−11)]E D D • Result: Portfolio weights are linear in expected w = g + h E portfolio return p If E = 0, wp = g Hence, g and g+h are portfolios Slide 0707--1717 If E = 1, wp = g + h on the frontier. Fin 501: Asset Pricing Charac ter iza tion of F ronti er P ortf oli os • Proposition 6.1: The entire set of frontier portflifolios can begenerated by ("are convex combinations" of) g and g+h. • Proposition 6.2. The portfolio frontier can be described as convex combinations of any two frontier portfolios, not just the frontier portfolios g and g+h. • Proposition 6.3 :Any convex combination of frontier portfolios is also a frontier portfolio. MeanMean--VarianceVariance Analysis and CAPM Slide 0707--1818 Fin 501: Asset Pricing …Characterization of Frontier Portfolios… 2 ~ ~ T ~ • For any portfolio on the frontier, σ ()E[rp ] = [g + hE(rp )] V [g + hE(rp )] with g and h as defined earlier. Multiplying all this out yields: 10:13 Lecture MeanMean--VarianceVariance Analysis and CAPM Slide 0707--1919 Fin 501: Asset Pricing …Characterization of Frontier Portfolios… • (i) the expected return of the minimum variance portfolio is A/C; • (ii) the variance of the minimum variance portfolio is given by 1/C; • (iii) equation (6.17) is the equation of a parabola with vertex (1/C, A/C) inthe expected return/i/variance space and of a hyperbola in the expected return/standard deviation space. See Figures 6.3 and 6.4. MeanMean--VarianceVariance Analysis and CAPM Slide 0707--2020 Fin 501: Asset Pricing Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space MeanMean--VarianceVariance Analysis and CAPM Slide 0707--2121 Fin 501: Asset Pricing Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space MeanMean--VarianceVariance Analysis and CAPM Slide 0707--2222 Fin 501: Asset Pricing Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed MeanMean--VarianceVariance Analysis and CAPM Slide 0707--2323 Fin 501: Asset Pricing Efficient Frontier with risk-free asset The Efficient Frontier: One Risk Free and n Risky Assets Slide 0707--2424 Fin 501: Asset Pricing Efficient Frontier with risk -free asset 1 T minw 2w Vw T T s.t. w e +(1 w 1)r = E[rp] − f 1 FOC: wp = λV (e r 1) − − f T E[rp] rf Multiplying by (e–rf 1) and solving for λ yields λ = − (e r 1)T V 1(e r 1) − f − − f 1 E[rp] rf wp = V − (e rf 1) 2− − H n 1 × 2 where H = B 2 Ar f + Cr f Slide 0707- -25is25 a n | {z } − q Fin 501: Asset Pricing Effici ent f ronti er wi th ri sk -free asset • Result 1: Excess return in frontier excess return T Cov[rq,rp]=wq Vwp E[r ] r = wT (e r 1) p − f q − f H2 E[r ] r q − f (E[r ] r )([E[r ] r ) = | q{z− f } p − f H2 (E[r ] r )2 Var[r ,r ]= p − f p p H2 Cov[rq,rp] E[rq] rf = (E[rp] rf) − V ar[rp] − :=βq,p Holds for any frontier portfolio p, in particular the marketSlide portfo 0707--2626 l | {z } Fin 501: Asset Pricing Efficient Frontier with risk -free asset • Result 2: Frontier is linear in (E[r], σ)-space (E[r ] r )2 V ar[r , r ] = p − f p p H2 E[rp]=rf + Hσp E[r ] r H = p − f σp where H is the Sharpe ratio Slide 0707--2727 Fin 501: Asset Pricing TFdStiTwo Fund Separation • Doing it in two steps: – First solve frontier for n risky asset – Then solve tangency point • Advantage: – Same portfolio of n risky asset for different agents with different risk aversion – Useful for applying equilibrium argument (later) Slide 0707--2828 Fin 501: Asset Pricing Two Fund Separation Price of Risk = = highest Sharpe ratio Optimal Portfolios of Two Investors with Different Risk Aversion Slide 0707--2929 Fin 501: Asset Pricing Meanean--ViVariance P Pfreferences ∂U ∂U > 0, 2 < 0 ∂μp ∂σp •U(μp, σp) with E[W ] γ Var[W ] − 2 –Example: • Also in expected utility framework – quadratic utility function (with portfolio return R) U(()R) = a + b R + c R2 vNM: E[U(R)] = a + b E[R] + c E[R2] 2 2 = a + b μp + c μp + c σp = g(μp, σp) j j – asset returns normally distributed ⇒ R=∑j w r normal 2 • if U(.) is CARA ⇒ certainty equivalent = μp - ρA/2σ p (Use moment generating function) Slide 0707--3030 Fin 501: Asset Pricing Equilibrium leads to CAPM • Portfolio theory: only analysis of demand – price/returns are taken as given – composit ion of ri sk y portf oli o i s same f or all i nvestors • Equilibrium Demand = Supply (market portfolio) • CAPM allows to derive – equilibrium prices/ returns.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    84 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us