Chapter 3: the Math of Thermodynamics

Chapter 3: the Math of Thermodynamics

Winter 2013 Chem 254: Introductory Thermodynamics Chapter 3: The Math of Thermodynamics .................................................................................... 25 Derivatives of functions of a single variable ............................................................................. 25 Partial Derivatives ..................................................................................................................... 26 Total Differentials ..................................................................................................................... 28 Differential Forms ..................................................................................................................... 31 Integrals .................................................................................................................................... 32 Line Integrals ............................................................................................................................. 32 Exact vs Inexact Differential ...................................................................................................... 33 Definition of β and κ ................................................................................................................. 36 Dependence of U on T and V .................................................................................................... 37 Dependence of H on T and P .................................................................................................... 37 Derivations involving dH ........................................................................................................... 38 Relation between CP and CV (Exact) ......................................................................................... 39 Joule Thompson Experiment .................................................................................................... 39 Chapter 3: The Math of Thermodynamics Derivatives of functions of a single variable df f()() x h f x lim dxh0 h instantaneous slope f()() x h f x h lim h0 2h (better if done on a computer with finite step size) Often used derivatives df fx() dx xa axa1 eax aeax 1 ln(ax ) x ln(ax ) ln a ln x Chapter 3: The Math of Thermodynamics 25 Winter 2013 Chem 254: Introductory Thermodynamics sin(ax ) acos( ax ) cos(ax ) asin( ax ) Rules for Derivatives d df dg f()() x g x dx dx dx d df dg f()()()() x g x g x f x Leibniz dx dx dx df df du ux() Chain rule dx du dx d Eg. sin(x22 ) cos( x )2 x dx d 22 e2x 3 x e 2 x 3 x (4 x 3) dx df dg g()() x f x d f() x dx dx Quotient Rule dx g() x gx()2 Partial Derivatives f(,) x y depends on multiple variables eg. T(,,) x y z the thermometer reading in a room f Pronounced: di f , di x at constant y x y The change in function x -direction keeping y constant Rules to take partial derivatives same as in 1 dimension, treat remaining variable as constants x22 y x f(,) x y e f x22 y x ex(2 1) x y f x22 y x ey(2 ) y x f( x , y ) ln( x2 2 xy ) Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 26 Winter 2013 Chem 254: Introductory Thermodynamics f 1 2 (2xy 2 ) x y x 2 xy f 1 2 (2x ) y x x 2 xy Higher Partial Derivatives d2 f() x d df For one variable: 2 dx dx dx 2 dd2 12 Eg. 2ln(xx ) 2 2 2 dxdx x x 2 ff Partial derivatives: 2 x xx y y y 2 ff 2 y yy x x x Mixed Derivatives ff x y y y xyy x f x2222 xy x xy e e(2 x 2 y ) x y f x2222 xy x xy e e(2 x ) y x f x2 2 xy (e )(2 x 2 y ) y x y x y x x2222 xy x xy e(2 x 2 y )(2 x ) e (2) f x2 2 xy (ex )(2 ) x y x x y 22 ex22 xy(2 x 2 y )(2 x ) e x xy (2) Order of derivatives does not matter f 22 f f x y x y y x x y Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 27 Winter 2013 Chem 254: Introductory Thermodynamics In mathematics one would typically not write out what’s kept constant f f f instead of ; f(,,) x y z instead of x x y x yz, In Thermodynamics: ALWAYS write what is kept constant V V , T Pn, T H Total Differentials when 2 or more variables are not constant One dimension df11 d23 f d f df dx dx23 dx .... dx2! dx23 3! dx df dx for dx infinitesimal dx df f()() x dx f x dx x Two dimensions ff df dx dy .... xyy x f(,)(,) x x y y f x y ff df x y xy y xy x xy x in arbitrary direction , We can calculate the change in function f (for small x , y ) y Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 28 Winter 2013 Chem 254: Introductory Thermodynamics Curve f( x , y ) 0 ff df dx dy 0 xyy x Calculate how much does y change if x x dx f f dy x y ff dx y x dx dy dx f xyy dy f x x y x y y 1 So keeping f constant x f x y f Consider function f( x , y , z ) 0 (surface in 3 dimensions) ff z constant : dx dy 0 xyyz, zx, f x y zx,. y f z x zy, ff y constant: dx dz 0 xz y,, z y x f z x zy,. x y f z xy, ff x constant: dy dz 0 yzxz, xy, Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 29 Winter 2013 Chem 254: Introductory Thermodynamics f y z xy,. z x f y zx, x z y Cyclic Rule 1 for f( x , y , z ) 0 yz x yx z Proof: f f f 3 1 y x z x z y xz, yz, xy, 1 yz x yx z f f f x zy, z xy, y zx, From the cyclic rule y z 1 y z x x yx x z y z Way to remember cyclic rule z z y x yz yx x Application in Thermodynamics nRT n2 Van der Waals P a nRT() V nb1 an 2 V 2 V nb V 2 P nR TV V nb P 2 2 3 nRT( 1)( V nb ) an ( 2) V V T V V : first derive V f(,) P T then find (very hard) P T P T V How do we calculate ? P T Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 30 Winter 2013 Chem 254: Introductory Thermodynamics V 1 We can use P P T V T VVP ( 1) (cyclic rule) TPT PTV PP Calculate using above results TV VT Differential Forms General differential form (Pfaff): df gxydx(,)(,) hxydy f f Question: Is there a function F(,) x y such that g(,) x y and h(,) x y ? x y y x df dF df F F Path final initial If F(,) x y associated with g(,)(,) x y dx h x y dy then: g(,)(,) x y h x y yxx y If this relationship holds: a function does exist If this relationship does not hold: does not exist df gxydx(,)(,) hxydy is an exact differential if and only if , otherwise it’s an inexact differential If df is an exact differential independent of path that runs between initial and final state dU,,,, dH dS dG dA: exact differential qw, : inexact differential Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 31 Winter 2013 Chem 254: Introductory Thermodynamics Integrals b n f( x ) dx lim f ( x1 ) dx (Area under function) a x 0 i1 f() xi x = area for each rectangle dF b Find function Fx() such that fx()then: f()()() x dx F b F a dx a Strategy for solving integrals 1) - guess solution, dF - verify the differentiation fx()? dx - if not right tinker with constants 2) - Look them up (books) or use math programs Examples in thermodynamics dF fx() Fx() dx 1 1 aa xaa ( 1) xa1 (a 1) x x a 1 (a 1) b bln x ln xb x 1 ax 1 ax eax e ae a a Line Integrals Consider differential df gxydx(,)(,) hxydy consider paths y()() x P1 x and y()() x P2 x df I df I in general II Px() 1 Px() 2 12 1 2 Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 32 Winter 2013 Chem 254: Introductory Thermodynamics dP dy 1 dx dx I gxydx(,)(,) hxydy df 1 Path x2 dP I gxPxdxhxPx ,(),() 1 dx 1x 1 1 1 dx x2 dP I gxPx ,(),() hxPx 1 dx 1x 1 1 1 dx x2 I c() x dx reduced to 1d integral 1 x 1 Likewise: x2 dP I gxPx ,(),() hxPx 2 dx 2x 2 2 1 dx integrals are different But: they are the same if and only df is an exact differential If df exact differential then I1 I(,)(,) x yfinal I x y initial Exact vs Inexact Differential dd Inexact differential: g(,)(,) x y h x y dyx dx y df gives results but depends on path Path Real life example of exact differential: height differences on a mountain It is clear the height difference is independent of how you get there y()() x P x How do you get contours for map?1 Measure the height differences between neighbouring points dh hxy dx h dy measure in small steps h(,) x y defines height function of xy, Real life example of Inexact differential: shoveling snow Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 33 Winter 2013 Chem 254: Introductory Thermodynamics d d dx d dy snow x y The amount of snow you shovel depends on the path you take between points A and B Exact differential: df2 xydx x2 dy (2xy ) ( x2 ) yxxy 22xx Therefore, is exact differential df is independent of path dF dF 2 2 Fx() such that 2xy ; x F(,) x y x y dx y dy x dP d() y x Px(): yx 1 1 1 dx dx dP d() y x2 Px(): yx 2 2 2x 2 dx dx I gxydx(,)(,) hxydy 1 Path x1 dP gxPxdx ,(),() hxPx 1 dx x0 11dx 11 22 I2 x xdx x 1 dx 3 x dx 1 00 3 1 x 1 0 11 2 2 3 I2 x x dx x 2 xdx 4 x dx 2 00 4 1 x 1 (integral result is the same because exact differential) 0 2 F(,) x y x y IFFn (1,1) (0,0) 1 0 1 Example of inexact differential: df x2 dx2 xydy ; Chapter 3: The Math of ThermodynamicsChapter 3: The Math of Thermodynamics 34 Winter 2013 Chem 254: Introductory Thermodynamics 11 22 I x 1 dx 2 xxdx 1 3 xdx 1 00 3 1 x 1 0 11 2 2 2 4 I x dx 2 x x 2 xdx x 4 x dx 2 00 1 135 4 1 4 17 xx 1 3 50 3 5 15 (x2 ) (2 xy ) ? yxxy 02y not equal, differential is not exact, II12 in general F 2 F Does F(,) x y exist such that x and 2xy ? x y y x F 2 1 3 x F x c x y 3 F 2 2xy F xy c Not equal y x Hence: for inexact differentials, line integrals can be calculated, but results depends on path.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us