Researchers Pursue a Narrow Particle with Wide Implications 25 July 2006

Researchers Pursue a Narrow Particle with Wide Implications 25 July 2006

Researchers Pursue a Narrow Particle with Wide Implications 25 July 2006 Northeastern University researchers Pran Nath, Gerlach Stueckelberg in 1938. While the Daniel Feldman and Zuowei Liu have shown that Stueckelberg mechanism arises naturally in string the discovery of a proposed particle, dubbed the theory, Kors and Nath were the first to successfully Stueckelberg Z prime, is possible utilizing the data utilize it in building a model of particle physics. being collected in the CDF and DO experiments at the Fermilab Tevatron. “If the Stueckelberg Z prime particle were to be discovered, it could signify a new kind of physics The Stueckelberg Z prime particle, originally altogether, a new regime so to speak,” said Nath. proposed by Boris Kors currently at CERN, “The prospect is quite exciting.” Geneva, Switzerland and Pran Nath at Northeastern University in 2004, is so narrow that Source: Northeastern University questions had been raised as to whether or not it could be detected. This new research, published in the July issue of Physical Review Letters, confirms that it can. The results are of importance because the discovery of this particle would provide a clue to the nature of physics beyond the Standard Model and a possible link with string theory. “It is exciting to know that the discovery of the proposed particle at colliders is indeed possible,” said Pran Nath, Matthews Distinguished University Professor of Physics at Northeastern University. “Physicists are always looking for what is next, what will lie beyond the Standard Model. These findings point us in the direction of those answers.” Because of its extreme narrowness, the Stueckelberg Z prime particle resembles the J/Psi (charmonium) particle, whose simultaneous discovery in 1974 by Burton Richter and Samuel Ting earned them the 1976 Nobel Prize in Physics. However, unlike the J/Psi which is a bound state, the new particle is not a bound state but a proposed new fundamental building block of matter. What sets the new Z prime particle apart from all others is the mechanism by which it gains mass. While in the Standard Model particles such as the W and Z bosons gain mass by the Higgs phenomena, the new Z prime particle gains mass by the Stueckelberg mechanism proposed by the Swiss mathematician and physicist Ernst Carl 1 / 2 APA citation: Researchers Pursue a Narrow Particle with Wide Implications (2006, July 25) retrieved 25 September 2021 from https://phys.org/news/2006-07-pursue-narrow-particle-wide-implications.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. 2 / 2 Powered by TCPDF (www.tcpdf.org).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us