The Spatial Frequency Domain

The Spatial Frequency Domain

The spatial frequency domain MIT 2.71/2.710 Optics 10/31/05 wk9-a-1 Recall: plane wave propagation x path delay increases linearly with x λ ⎛ x E0 exp⎜i2π sinθ + ⎝ λ z ⎞ i2π cosθ ⎟ λ ⎠ θ z=0 z plane of observation MIT 2.71/2.710 Optics 10/31/05 wk9-a-2 Spatial frequency ⇔ angle of propagation? x λ electric field θ z=0 z plane of observation MIT 2.71/2.710 Optics 10/31/05 wk9-a-3 Spatial frequency ⇔ angle of propagation? x λ θ z=0 z plane of observation MIT 2.71/2.710 Optics 10/31/05 wk9-a-4 Spatial frequency ⇔ angle of propagation? The cross-section of the optical field with the optical axis is a sinusoid of the form ⎛ sinθ ⎞ E0 exp⎜i2π x +φ0 ⎟ ⎝ λ ⎠ i.e. it looks like sinθ E exp()i2π u x +φ where u ≡ 0 0 λ is called the spatial frequency MIT 2.71/2.710 Optics 10/31/05 wk9-a-5 2D sinusoids corresp. phasor E0 cos[]2π ()ux + vy E0 exp[i2π (ux + vy)] y x MIT 2.71/2.710 Optics 10/31/05 wk9-a-6 2D sinusoids corresp. phasor E0 cos[]2π ()ux + vy E0 exp[i2π (ux + vy)] y x min max MIT 2.71/2.710 Optics 10/31/05 wk9-a-7 2D sinusoids corresp. phasor E0 cos[]2π ()ux + vy E0 exp[i2π (ux + vy)] y 1/u 1/v x min max MIT 2.71/2.710 Optics 10/31/05 wk9-a-8 2D sinusoids corresp. phasor E0 cos[]2π ()ux + vy E0 exp[i2π (ux + vy)] u tanψ = y v 1 Λ = 2 2 u + v Λ x ψ min max MIT 2.71/2.710 Optics 10/31/05 wk9-a-9 Spatial (2D) Fourier Transforms MIT 2.71/2.710 Optics 10/31/05 wk9-a-10 The 2D2D Fourier integral (aka inverseinverse FourierFourier transformtransform) g()x, y = ∫ G(u,v) e+i2π (ux+vy) dudv superposition sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids MIT 2.71/2.710 Optics 10/31/05 wk9-a-11 The 2D2D Fourier transform The complex weight coefficients G(u,v), aka FourierFourier transformtransform of g(x,y) are calculated from the integral G()u,v = ∫ g(x, y) e−i2π (ux+vy) dxdy (1D so we can draw it easily ... ) g(x) Re[e-i2πux] Re[G(u)]=∫ x dx MIT 2.71/2.710 Optics 10/31/05 wk9-a-12 2D2D Fourier transform pairspairs (from Goodman, Introduction to Fourier Optics, page 14) MIT 2.71/2.710 Optics 10/31/05 wk9-a-13 Space and spatial frequency representations SPACE DOMAIN g(x,y) G()u,v = ∫ g (x, y ) e−i2π (ux+vy) dxdy g(x, y) = ∫ G(u,v) e+i2π (ux+vy) dudv 2D2D FourierFourier transformtransform 2D2D FourierFourier integralintegral aka inverseinverse 2D2D FourierFourier transformtransform SPATIAL FREQUENCY DOMAIN G(u,v) MIT 2.71/2.710 Optics 10/31/05 wk9-a-14 Periodic Grating /1: vertical y v x u Frequency Space (Fourier) domain y v domain x u MIT 2.71/2.710 Optics 10/31/05 wk9-a-15 Periodic Grating /2: tilted y v x u Frequency Space (Fourier) domain y v domain x u MIT 2.71/2.710 Optics 10/31/05 wk9-a-16 Superposition: multiple gratings ++ Frequency Space (Fourier) domain domain MIT 2.71/2.710 Optics 10/31/05 wk9-a-17 Superpositions: spatial frequency representation Frequency Space (Fourier) domain domain MIT 2.71/2.710 Optics 10/31/05 wk9-a-18 Superpositions: spatial frequency representation space domain spatial frequency domain g()x, y G(u,v) = ℑ{g(x, y)} MIT 2.71/2.710 Optics 10/31/05 wk9-a-19 Fourier transform properties /1 • Fourier transforms and the delta function ℑ{}δ ()x, y =1 ℑ{}exp[]i2π (u0 x + v0 y) = δ (u − u0 )δ (v − v0 ) • Linearity of Fourier transforms if ℑ{}g1()x, y = G1(u,v)() and ℑ{g2 x, y }= G2 (u,v) then ℑ{}()()a1g1()x, y + a2 g2 ()x, y = a1G1 u,v + a2G2 u,v for any pair of complex numbers a1, a2. MIT 2.71/2.710 Optics 10/31/05 wk9-a-20 Fourier transform properties /2 Let ℑ{}g()x, y = G(u,v) • Shift theorem (space → frequency) ℑ{}g()x − x0 , y − y0 = G(u,v)exp[− i2π (ux0 + vy0 )] • Shift theorem (frequency → space) ℑ{}g()x, y exp[i2π (ux0 + vy0 )] = G(u − u0 ,v − v0 ) • Scaling theorem 1 ⎛ u v ⎞ ℑ{}g()ax,by = G⎜ , ⎟ ab ⎝ a b ⎠ MIT 2.71/2.710 Optics 10/31/05 wk9-a-21 Modulation in the frequency domain: the shift theorem Frequency Space (Fourier) domain domain MIT 2.71/2.710 Optics 10/31/05 wk9-a-22 Size of object vs frequency content: the scaling theorem Frequency Space (Fourier) domain domain MIT 2.71/2.710 Optics 10/31/05 wk9-a-23 Fourier transform properties /3 Let ℑ{}f ()x, y = F(u,v) and ℑ{}h(x, y) = H (u,v) Let g()x, y = ∫ f (x′, y′)⋅h(x − x′, y − y′) dx′dy′ • Convolution theorem (space → frequency) ℑ{}g()x, y = F(u,v)⋅ H (u,v) Let Q()u,v = ∫ F(u′,v′)⋅ H (u − u′,v − v′) du′dv′ • Convolution theorem (frequency → space) Q()u,v = ℑ{f (x, y)⋅h(x, y)} MIT 2.71/2.710 Optics 10/31/05 wk9-a-24 Fourier transform properties /4 Let ℑ{}f ()x, y = F(u,v) and ℑ{}h(x, y) = H (u,v) Let g()x, y = ∫ f (x′, y′)⋅h(x′ − x, y′ − y) dx′dy′ • Correlation theorem (space → frequency) ℑ{}g()x, y = F(u,v)⋅ H * (u,v) Let Q()u,v = ∫ F(u′,v′)⋅ H (u′ − u,v′ − v) du′dv′ • Correlation theorem (frequency → space) Q()u,v = ℑ{f (x, y)⋅h* (x, y)} MIT 2.71/2.710 Optics 10/31/05 wk9-a-25 Spatial frequency representation space domain Fourier domain 3 sinusoids (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/31/05 wk9-a-26 Spatial filtering space domain Fourier domain 2 sinusoids (1 removed) (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/31/05 wk9-a-27 Spatial frequency representation space domain Fourier domain g()x, y (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/31/05 wk9-a-28 G(u,v) = ℑ{g(x, y)} Spatial filtering (low–pass) removed high-frequency content space domain Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/31/05 wk9-a-29 Spatial filtering (band–pass) removed high- and low-frequency content space domain Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/31/05 wk9-a-30 Example: optical lithography original pattern mild (“nested L’s”) low-pass filtering Notice: (i) blurring at the edges (ii) ringing MIT 2.71/2.710 Optics 10/31/05 wk9-a-31 Example: optical lithography original pattern severe (“nested L’s”) low-pass filtering Notice: (i) blurring at the edges (ii) ringing MIT 2.71/2.710 Optics 10/31/05 wk9-a-32 2D2D linear shift invariant systems input output convolution with impulse response gi(x,y) go(x’, y’) inverse Fourier g x′, y′ = g x, y h x′ − x, y′ − y dxdy inverse Fourier o ()∫ i ( ) ( ) transform transform LSI Fourier Fourier transform transform multiplication with transfer function Gi(u,v) Go(u,v) Go (u,v) = Gi (u,v)( H u,v ) MIT 2.71/2.710 Optics 10/31/05 wk9-a-33 2D2D linear shift invariant systems SPACE DOMAIN input output convolution with impulse response gi(x,y) go(x’, y’) inverse Fourier g x′, y′ = g x, y h x′ − x, y′ − y dxdy inverse Fourier o ()∫ i ( ) ( ) transform transform LSI Fourier Fourier transform transform multiplication with transfer function Gi(u,v) Go(u,v) Go (u,v) = Gi (u,v)( H u,v ) SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/31/05 wk9-a-34 2D2D linear shift invariant systems input output convolution with impulse response gi(x,y) go(x’, y’) inverse Fourier g x′, y′ = g x, y h x′ − x, y′ − y dxdy inverse Fourier o ()∫ i ( ) ( ) transform transform LSI h(x,y), H(u,v) Fourier Fourier transform transform are 2D F.T. pair multiplication with transfer function Gi(u,v) Go(u,v) Go (u,v) = Gi (u,v)( H u,v ) MIT 2.71/2.710 Optics 10/31/05 wk9-a-35 Sampling space and frequency δx :pixel size δu :frequency resolution umax space ∆x :field size spatial domain frequency Nyquist 1 1 umax = δu = domain relationships: 2δx 2∆x MIT 2.71/2.710 Optics 10/31/05 wk9-a-36 The Space–Bandwidth Product Nyquist relationships: 1 from space → spatial frequency domain: u = max 2δx ∆x 1 from spatial frequency → space domain: = 2 2δu ∆x 2u = max ≡ N : 1D Space–Bandwidth Product (SBP) δx δu aka number of pixels in the space domain 2D SBP ~ N 2 MIT 2.71/2.710 Optics 10/31/05 wk9-a-37 SBP: example space domain Fourier domain δx =1 ∆x =1024 (aka spatial frequency domain) MIT 2.71/2.710 Optics −4 10/31/05 wk9-a-38 umax = 0.5 δu =1/1024 = 9.765625×10.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us