Some Inequalities for the Q-Digamma Function 1 Introduction and Preliminaries

Some Inequalities for the Q-Digamma Function 1 Introduction and Preliminaries

Mathematica Aeterna, Vol. 4, 2014, no. 5, 515 - 519 Some Inequalities for the q-Digamma Function Kwara Nantomah Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. [email protected], [email protected] Edward Prempeh Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. [email protected] Abstract Some inequalities involving the q-digamma function are presented. These results are the q-analogues of some recent results. Mathematics Subject Classification: 33B15, 26A48. Keywords: digamma function, q-digamma function, Inequality. 1 Introduction and Preliminaries The classical Euler’s Gamma function Γ(t) and the digamma function ψ(t) are commonly defined as ∞ d Γ′(t) Γ(t)= e−xxt−1 dx, and ψ(t)= ln(Γ(t)) = , t> 0. dt Γ(t) Z0 Similarly the q-Gamma and q-digamma functions are defined as (see [1]) ∞ 1 − qn Γ (t)=(1 − q)1−t , q ∈ (0, 1), t> 0. q 1 − qt+n n=1 Y and ′ d Γq(t) ψq(t)= ln(Γq(t)) = dt Γq(t) 516 Kwara Nantomah and Edward Prempeh The functions ψ(t) and ψq(t) as defined above exhibit the following series representations. ∞ 1 ψ(t)= −γ +(t − 1) , t> 0. (1 + n)(n + t) n=0 X ∞ qnt ψ (t)= − ln(1 − q) + (ln q) , q ∈ (0, 1), t> 0. q 1 − qn n=1 X where γ is the Euler-Mascheroni’s constant. By taking the m-th derivative of the above functions, we arrive at the following statements for m ∈ N. ∞ 1 ψ(m)(t)=(−1)m+1m! , t> 0. (n + t)m+1 n=0 ∞X nmqnt ψ(m)(t) = (ln q)m+1 , q ∈ (0, 1), t> 0. q 1 − qn n=1 X In 2011, Sulaiman [3] presented the following results. ψ(t + s) ≥ ψ(t)+ ψ(s) (1) where t> 0 and 0 <s< 1. ψ(m)(t + s) ≤ ψ(m)(t)+ ψ(m)(s) (2) where m is a positive odd integer and t,s > 0. ψ(m)(t + s) ≥ ψ(m)(t)+ ψ(m)(s) (3) where m is a positive even integer and t,s > 0. In a recent paper, Sroysang [2] presented the following geralizations of the above inequalities. α α ψ(t + βisi) ≥ ψ(t)+ βiψ(si) (4) i=1 i=1 X X where t> 0, βi > 0 and 0 <si < 1 for all i ∈ Nα. α α (m) (m) (m) ψ (t + βisi) ≤ ψ (t)+ βiψ (si) (5) i=1 i=1 X X Some Inequalities for the q-Digamma Function 517 where m is a positive odd integer, t> 0, βi > 0 and si > 0 for all i ∈ Nα. α α (m) (m) (m) ψ (t + βisi) ≥ ψ (t)+ βiψ (si) (6) i=1 i=1 X X where m is a positive even integer, t> 0, βi > 0 and si > 0 for all i ∈ Nα. The objective of this paper is to establish that the inequalities (4), (5) and (6) still hold true for the q-digamma function. 2 Main Results We now present our results. Theorem 2.1. Let q ∈ (0, 1), t > 0, βi > 0 and 0 < si < 1 for all i ∈ Nα. Then the following inequality is valid. α α ψq(t + βisi) ≥ ψq(t)+ βiψq(si) (7) i=1 i=1 Xα Xα Proof. Let u(t)= ψq(t + i=1 βisi) − ψq(t) − i=1 βiψq(si). Then fixing si for each i we have, P P α ′ ′ ′ u (t)= ψq(t + βisi) − ψq(t) i=1 X∞ α nqn(t+Pi=1 βisi) nqnt = (ln q)2 − 1 − qn 1 − qn n=1 X∞ α nqnt(qn Pi=1 βisi − 1) = (ln q)2 ≤ 0. 1 − qn n=1 X That implies u is non-increasing. Moreover, α α lim u(t) = lim ψq(t + βisi) − ψq(t) − βiψq(si) t→∞ t→∞ " i=1 i=1 # α X X = ln(1 − q) βi i=1 X∞ α α qn(t+Pi=1 βisi) qnt β qnsi + (ln q) lim − − i t→∞ 1 − qn 1 − qn 1 − qn n=1 " i=1 # α X ∞ α X β qnsi = ln(1 − q) β − (ln q) i ≥ 0. i 1 − qn i=1 n=1 i=1 X X X Therefore u(t) ≥ 0 concluding the proof. 518 Kwara Nantomah and Edward Prempeh Theorem 2.2. Let q ∈ (0, 1), t> 0, βi > 0 and si > 0 for all i ∈ Nα. Suppose that m is a positive odd integer, then the following inequality is valid. α α (m) (m) (m) ψq (t + βisi) ≤ ψq (t)+ βiψq (si) (8) i=1 i=1 X X (m) α (m) α (m) Proof. Let v(t)= ψq (t + i=1 βisi) − ψq (t) − i=1 βiψq (si). Then fixing si for each i we have, P P α ′ (m+1) (m+1) v (t)= ψq (t + βisi) − ψq (t) i=1 ∞X α nm+1qn(t+Pi=1 βisi) nm+1qnt = (ln q)m+2 − 1 − qn 1 − qn n=1 X∞ α nm+1qnt(qn Pi=1 βisi − 1) = (ln q)m+2 ≥ 0. (since m is odd) 1 − qn n=1 X That implies v is non-decreasing. Moreover, α α (m) (m) (m) lim v(t) = lim ψq (t + βisi) − ψq (t) − βiψq (si) t→∞ t→∞ " i=1 i=1 # ∞X α X α m n(t+Pi=1 βisi) m nt m nsi m+1 n q n q n q = (ln q) lim − − βi t→∞ 1 − qn 1 − qn 1 − qn n=1 " i=1 # ∞Xα X nmqnsi = −(ln q)m+1 β ≤ 0. (since m is odd) i 1 − qn n=1 i=1 X X Therefore v(t) ≤ 0 concluding the proof. Theorem 2.3. Let q ∈ (0, 1), t> 0, βi > 0 and si > 0 for all i ∈ Nα. Suppose that m is a positive even integer, then the following inequality is valid. α α (m) (m) (m) ψq (t + βisi) ≥ ψq (t)+ βiψq (si) (9) i=1 i=1 X X (m) α (m) α (m) Proof. Let w(t)= ψq (t+ i=1 βisi)−ψq (t)− i=1 βiψq (si). Then fixing P P Some Inequalities for the q-Digamma Function 519 si for each i we have, α ′ (m+1) (m+1) w (t)= ψq (t + βisi) − ψq (t) i=1 ∞X α nm+1qn(t+Pi=1 βisi) nm+1qnt = (ln q)m+2 − 1 − qn 1 − qn n=1 X∞ α nm+1qnt(qn Pi=1 βisi − 1) = (ln q)m+2 ≤ 0. (since m is even) 1 − qn n=1 X That implies w is non-increasing. Moreover, α α (m) (m) (m) lim w(t) = lim ψq (t + βisi) − ψq (t) − βiψq (si) t→∞ t→∞ " i=1 i=1 # ∞X α X α m n(t+Pi=1 βisi) m nt m nsi m+1 n q n q n q = (ln q) lim − − βi t→∞ 1 − qn 1 − qn 1 − qn n=1 " i=1 # ∞Xα X nmqnsi = −(ln q)m+1 β ≥ 0. (since m is even) i 1 − qn n=1 i=1 X X Therefore w(t) ≥ 0 concluding the proof. Remark 2.4. If we let q → 1− in inequalities (7), (8) and (9) then we repectively recover the inequalities (4), (5) and (6). References [1] T. Mansour, Some inequalities for the q-Gamma Function, J. Ineq. Pure Appl. Math. 9(1)(2008), Art. 18. [2] B. Sroysang, More on some inequalities for the digamma function, Math. Aeterna, 4(2)(2014), 123-126. [3] W. T. Sulaiman, Turan inequalites for the digamma and polygamma func- tions, South Asian J. Math. 1(2)(2011), 49-55. Received: May, 2014.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us