Optical Waveguide Theory (F)

Optical Waveguide Theory (F)

Optical Waveguide Theory (F) Manfred Hammer∗ Theoretical Electrical Engineering Paderborn University, Paderborn, Germany Paderborn University — Winter Semester 2021/2022 ∗Theoretical Electrical Engineering, Paderborn University Phone: +49(0)5251/60-3560 Warburger Straße 100, 33098 Paderborn, Germany E-mail: [email protected] 1 Course overview Optical waveguide theory A Photonics / integrated optics; theory, motto; phenomena, introductory examples. B Brush up on mathematical tools. C Maxwell equations, different formulations, interfaces, energy and power flow. D Classes of simulation tasks: scattering problems, mode analysis, resonance problems. E Normal modes of dielectric optical waveguides, mode interference. F Examples for dielectric optical waveguides. G Waveguide discontinuities & circuits, scattering matrices, reciprocal circuits. H Bent optical waveguides; whispering gallery resonances; circular microresonators. I Coupled mode theory, perturbation theory. • Hybrid analytical / numerical coupled mode theory. J A touch of photonic crystals; a touch of plasmonics. • Oblique semi-guided waves: 2-D integrated optics. • Summary, concluding remarks. 2 2-D waveguide configurations 2 µ = ∼ exp( !t) x R, 1, i (FD) nc nf d • 2-D waveguide, 1-D cross section. z 2 ns • Permittivity = n , refractive index n(x). (1-D waveguide) • @y = 0 @yE = 0, @yH = 0, 2-D TE / TM setting. • @z = 0 Modal solutions that vary harmonically with z : mode profile E¯, H¯ , E E¯ (x; z) = (x) e−iβz, propagation constant β, H H¯ effective index neff = β=k. 3 2-D waveguide configurations 2 µ = ∼ exp( !t) x R, 1, i (FD) nc nf d • 2-D waveguide, 1-D cross section. z 2 ns • Permittivity = n , refractive index n(x). (1-D waveguide) • @y = 0 @yE = 0, @yH = 0, 2-D TE / TM setting. • @z = 0 Modal solutions that vary harmonically with z : mode profile E¯, H¯ , E E¯ (x; z) = (x) e−iβz, propagation constant β, H H¯ effective index neff = β=k. ¯ 2 ¯ 2 2 ¯ (TE): principal component Ey, @x Ey + (k − β )Ey = 0, −β i E¯x = 0; E¯z = 0; H¯x = E¯y; H¯y = 0; H¯z = @xE¯y; !µ0 !µ0 E¯y & @xE¯y continuous at dielectric interfaces. 3 2-D waveguide configurations 2 µ = ∼ exp( !t) x R, 1, i (FD) nc nf d • 2-D waveguide, 1-D cross section. z 2 ns • Permittivity = n , refractive index n(x). (1-D waveguide) • @y = 0 @yE = 0, @yH = 0, 2-D TE / TM setting. • @z = 0 Modal solutions that vary harmonically with z : mode profile E¯, H¯ , E E¯ (x; z) = (x) e−iβz, propagation constant β, H H¯ effective index neff = β=k. 1 (TM): principal component H¯ , ∂ @ H¯ + (k2 − β2)H¯ = 0, y x x y y β −i E¯x = H¯y; E¯y = 0; E¯z = @xH¯y; H¯x = 0; H¯z = 0; !0 !0 −1 H¯y & @xH¯y continuous at dielectric interfaces. 3 Guided 2-D TE / TM modes, orthogonality properties • A set (index m) of guided modes of a 2-D waveguide (), (! Exercise.) p ¯ ¯ p=TE;TM m = (Em; Hm), & βm, βm 6= βl, if l 6= m. 1 Z • (E ; H ; E ; H ) := E∗ H − E∗ H + H∗ E − H∗ E dx : 1 1 2 2 4 1x 2y 1y 2x 1y 2x 1x 2y p • Power Pm per lateral (y) unit length carried by mode m, βm : 8 Z βm 2 Z > jEm;yj dx; if p = TE, p p < 2!µ0 Pm := Sz dx = ( m; m) = Z > βm 1 2 :> jHm;yj dx; if p = TM. 2!0 Z TE TM TE TE βm ∗ ( l ; m ) = 0 ; ( l ; m ) = El;y Em;y dx = δlmPm ; 2!µ0 Z TM TE TM TM βm 1 ∗ ( l ; m ) = 0 ; ( l ; m ) = Hl;y Hm;y dx = δlmPm : 2!0 4 Dielectric multilayer slab waveguide x 2 R, µ = 1, ∼ exp(i !t) (2-D, FD) nN+1 hN nN hN 1 • N interior layers, − piecewise constant = n2: 8 . n h x z < N+1 if N < ; n(x) = nl if hl−1 < x < hl; h1 n h 1 : n if x < h : 0 n0 0 0 • Principal component φ(x) (TE: φ = E¯y, TM: φ = H¯y). 2 2 2 2 • @x φ + (k nl − β )φ = 0, x 2 layer l, l = 0;:::; N + 1 (Half-infinte substrate (l = 0) and cover (l = N + 1) layers.) −2 • φ & η@xφ continuous at x = hl, (TE: η = 1, TM: η = n ). 5 Dielectric multilayer slab waveguide x nN+1 hN • Interior layer l, nN hN 1 − hl−1 < x < hl, local refractive index nl, . z 2 2 2 2 • @x φ = (β − k n )φ. h l 1 n1 h 2 0 n0 • Consider a trial value β 2 R. q • 2 2 2 2 2 2 2 2 β < k nl @x φ = −κl φ, κl := k nl − β , φ(x) = Al sin(κl x) + Bl cos(κl x). q • 2 2 2 2 2 2 2 2 β > k nl @x φ = κl φ, κl := β − k nl , κl x −κl x φ(x) = Al e + Bl e . • Unknowns Al; Bl 2 C. (Local coordinate offsets required to cope with the exponentials.) 6 Dielectric multilayer slab waveguide, guided modes x nN+1 hN • Substrate region, nN hN 1 − x < h0, local refractive index n0, . z 2 2 2 2 • @x φ = (β − k n )φ. h 0 1 n1 h 2 0 n0 • Consider a trial value β 2 R. q • 2 2 2 2 2 2 2 2 β < k n0 @x φ = −κ0 φ, κ0 := k n0 − β , φ(x) = A0 sin(κ0 x) + B0 cos(−κ0 x). q • 2 2 2 2 2 2 2 2 β > k n0 @x φ = κ0 φ, κ0 := β − k n0, κ0 x −κ x φ(x) = A0 e + B0 e 0 . • Unknown A0 2 C. Guided modes: neff = β=k > n0. 7 Dielectric multilayer slab waveguide, guided modes x nN+1 hN • Cover region, nN hN 1 − hN < x, local refractive index nN+1, . z 2 2 2 2 • @x φ = (β − k n )φ. h N+1 1 n1 h 2 0 n0 • Consider a trial value β 2 R. q • 2 2 2 2 2 2 2 2 β < k nN+1 @x φ = −κN+1 φ, κN+1 := k nN+1 − β , φ(x) = AN+1 sin(κN+1 x) + BN+1 cos(−κN+1 x). q • 2 2 2 2 2 2 2 2 β > k nN+1 @x φ = κN+1 φ, κN+1 := β − k nN+1, κN+ x −κN+1 x φ(x) = AN+1 e 1 + BN+1 e . • Unknown BN+1 2 C. Guided modes: neff = β=k > nN+1. 8 Dielectric multilayer slab waveguide x nN+1 hN nN hN 1 − 2 . z Trial value β 2 R, h β=k > n0; nN+1, 1 n1 h0 n0 κl, l = 0;:::; N + 1. 8 B −κN+1 x; h < x; > N+1 e for N <> A sin(κ x) + B cos(κ x); if β2 < k2n2; φ(x) = l l l l l for h < x < h ; κl x −κl x 2 2 2 l−1 l > Al e + Bl e ; if β > k nl ; :> κ x A0 e 0 ; for x < h0: • 2N + 2 unknowns A0; A1; B1;:::; AN; BN; BN+1. • Continuity of φ, η@xφ at N + 1 interfaces 2N + 2 equations. 9 Dielectric multilayer slab waveguide x nN+1 hN nN hN 1 − 2 . z Trial value β 2 R, β=k > n ; n . h1 n 0 N+1 h 1 0 n0 • 2N + 2 unknowns A0; A1; B1;:::; AN; BN; BN+1. • Continuity of φ, η@xφ at N + 1 interfaces 2N + 2 equations. 2 T • Arrange as linear system of equations M(β )(A0;:::; BN+1) = 0. • Identify propagation constants where M(β2) becomes singular. (Equations relate to the series of interfaces $ A transfer-matrix technique can be applied.) • Choose e.g. A0 = 1, fill A1;:::; BN+1, normalize. ( :;: ; :;: ) Guided modes fβm; (E¯m; H¯ m)g. 10 A nonsymmetric 3-layer slab waveguide x nc ns = 1:45, nf = 1:99, nc = 1:0, d = 1:5 µm, λ = 1:55 µm. nf d TE : n = 1:944, TM : n = 1:933, z 0 eff 0 eff ns TE1: neff = 1:804, TM1: neff = 1:759, TE2: neff = 1:562, TM2: neff = 1:490. 25 0.12 20 15 0.08 10 0.04 5 y y 0 0 E H -5 TE0 -0.04 -10 TM0 TE1 -15 TM1 TE2 -0.08 TM2 -20 -25 -0.12 -0.5-1 0 0.5 1 1.5 2 2.5 -0.5-1 0 0.5 1 1.5 2 2.5 x [µm] x [µm] 11 Dielectric multilayer slab waveguide, nodal properties (Fixed polarization, TE / TM.) 2 2 2 @x(@xφ) = −(k n − β )φ. 25 20 k2n2 − β2 determines the rate of change of the slope of φ. 15 10 Imagine a numerical ODE algorithm of “shooting-type”. 5 y 0 E -5• Guided modes with a growing number of nodes (x with φ(x) = 0) TE0 -10 with decreasing effectiveTE1 indices -15 TE2 -20 mode indices = number of nodes in φ. -25 “Quantum numbers”. -0.5-1 0 0.5 1 1.5 2 2.5 x [µm] 12 Dielectric multilayer slab waveguide, nodal properties (Fixed polarization, TE / TM.) 2 2 2 @x(@xφ) = −(k n − β )φ. 25 20 k2n2 − β2 determines the rate of change of the slope of φ. 15 10 Imagine a numerical ODE algorithm of “shooting-type”. 5 y 0 E -5• Guided modes with a growing number of nodes (x with φ(x) = 0) TE0 -10 with decreasing effectiveTE1 indices -15 TE2 -20 mode indices = number of nodes in φ.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    53 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us