OPTICAL AND THIN FILM PHYSICS POLARISATION OF LIGHT An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular to each other; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization. On the other side of the plate, examine the wave at a point where the fast-polarized component is at maximum. At this point, the slow-polarized component will be passing through zero, since it has been retarded by a quarter-wave or 90° in phase. Moving an eighth wavelength farther, we will note that the two are the same magnitude, but the fast component is decreasing and the slow component is increasing. Moving another eighth wave, we find the slow component is at maximum and the fast component is zero. If the tip of the total electric vector is traced, we find it traces out a helix, with a period of just one wavelength. This describes circularly polarized light. Left-hand polarized light is produced by rotating either the waveplate or the plane of polarization of the incident light 90° . Quarter-waveplates are used to turn linearly polarized light into circularly polarized light and vice versa. To do this, the waveplate must be oriented so that equal amounts of fast and slow waves are excited. QUARTER WAVE PLATES Quarter-waveplates are used to turn linearly polarized light into circularly polarized light and vice versa. To do this, the waveplate must be oriented so that equal amounts of fast and slow waves are excited. This is achieved by orienting an incident linearly polarized wave at 45° to the fast (or slow) axis. Quarter wave plate are used to turn plane-polarized light into circularly Polarized light and vice versa. To do this, we must orient the wave plate so that equal amounts of fast and slow waves are excited. We may do this by orienting an incident plane-polarized wave at 45° to the fast (or slow) axis. When a l/4 plate is double passed, i.e., by mirror reflection, it acts as a l/2 plate and rotates the plane of polarization to a certain angle, i.e., 90°. This scheme is widely used in isolators, Q-switches, etc. The thickness of the quarter waveplate is such that the phase difference is 1/4 wavelength (l/4, Zero order) or certain multiple of 1/4-wavelength [(2n+1)l/4, multiple order]. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light. HALF WAVE PLATE HALF WAVE PLATE Suppose a plane-polarized wave is normally incident on a wave plate, and the plane of polarization is at an angle q with respect to the fast axis, as shown. After passing through the plate, the original plane wave has been rotated through an angle 2q A half-wave plate is very handy in rotating the plane of polarization from a polarized laser to any other desired plane (especially if the laser is too large to rotate). Most large ion lasers are vertically polarized. To obtain horizontal polarization, simply place a half-wave plate in the beam with its fast (or slow) axis 45° to the vertical. The l/2 plates can also change left circularly polarized light into right circularly polarized light or vice versa. The thickness of half waveplate is such that the phase difference is 1/2 wavelength (l/2, Zero order) or certain multiple of 1/2-wavelength [(2n+1)l/2, multiple order]. BABINET COMPENSATOR The Babinet–compensator is a continuously variable, zero-order retarder. It consists of two birefringent wedges, one of which is movable, and another is fixed to a compensator plate. The orientation of the long axis of the wedges is perpendicular to the long axis of the compensator plate. FRESNEL’S RHOMB A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa. If the incident beam is linearly polarized at some other inclination, the emerging beam is elliptically polarized with one principal axis in the plane of reflection, and vice versa. DOUBLE IMAGING POLARIZING PRISMS Unpolarized light ray enters through the left face of the crystal, as shown in the diagram, and is split into two orthogonally polarized, differently directed rays by the birefringence property of the calcite. The ordinary ray, or o-ray, experiences a refractive index of no = 1.658 in the calcite and undergoes total internal reflection at the calcite–glue interface because its angle of incidence at the glue layer (refractive index n = 1.55) exceeds the critical angle for the interface. It passes out the top side of the upper half of the prism with some refraction, as shown. The extraordinary ray, or e-ray, experiences a lower refractive index (ne = 1.486) in the calcite and is not totally reflected at the interface because it strikes the interface at a sub-critical angle. The e-ray merely undergoes a slight refraction, or bending, as it passes through the interface into the lower half of the prism. It finally leaves the prism as a ray of plane-polarized light, undergoing another refraction, as it exits the far right side of the prism. The two exiting rays have polarizations orthogonal (at right angles) to each other, but the lower, or e-ray, is the more commonly used for further experimentation because it is again traveling in the original horizontal direction, assuming that the calcite prism angles have been properly cut. The direction of the upper ray, or o-ray, is quite different from its original direction because it alone suffers total internal reflection at the glue interface, as well as a final refraction on exit from the upper side of the prism. MAGNETO OPTIC EFFECT • A magneto-optic effect is any one of a number of phenomena in which an electromagnetic wave propagates through a medium that has been altered by the presence of a quasistatic magnetic field. In such a medium, which is also called gyrotropic or gyromagnetic, left- and right-rotating elliptical polarizations can propagate at different speeds, leading to a number of important phenomena. When light is transmitted through a layer of magneto-optic material, the result is called the Faraday effect: the plane of polarization can be rotated, forming a Faraday rotator. The results of reflection from a magneto- optic material are known as the magneto-optic Kerr effect (not to be confused with the nonlinear Kerr effect). ELECTRO OPTIC EFFECT An electro-optic effect is a change in the optical properties of a material in response to an electric field that varies slowly compared with the frequency of light. The term encompasses a number of distinct phenomena, which can be subdivided into changes in absorption and changes in refractive index. .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages53 Page
-
File Size-