Heapsort Running Time Build-Heap(A

Heapsort Running Time Build-Heap(A

Heapsort Heap of n elements has height (show) - sorts in place – worst case running time All operations run in time proportional to the height - special data structure heap – complete binary tree Extract-Max, Insert, Extract-Min, Delete (completely filled except the lowest level) - Useful for priority queues Heap property : value of the node is at most - Discrete event simulators value of the parent A[Parent(i)] >= A[i] Algorithms for Heapify how to manipulate heaps Height of the node – number of edges on the longest path Buildheap how to build a heap from leaf to that node Heapsort how to sort using heap Idea: Implicit data structure – heap is represented by an Extract_max, array two attributes Insert maintain heap property is length(A) – length of the array heapsize(A) – number of elements of the heap Heap-Extract-Max(A) Remove A[1] How to get back and forth in the heap A[1] <- A[n] N <- n –1 Heapify(A,1,n) Different from the book Heapify(A,i,n) % assumes that L and R subtrees are heaps Build-Heap(A,n) % makes i’s subtree a heap if 2i · n and A[2i] > A[i] % build heap from unsorted array then largest <- 2i For i = n downto 1 else largest <- i do Heapify(A,i,n) if 2i+1 · n and A[2i+1] > A[largest] then largest <= 2i + 1 Simple bound on running time ≠ if largest i In fact more tight bound then exchange A[I] <-> A[largest] Heapify(A,largest,n) (idea of amortized analysis – more in chapter 18) Running time 1 Decision Tree Model Heapsort(A,n) Build-Heap(A,n) How to make sorting more efficient ? for i Å n downto 2 do exchange A[1] ÅÆ A[i] Can we do better then ? how to beat it ? Heapify(A,1,i-1) • establish the lower bound using the decision tree model Until now – sorting using comparisons only We for sure have to do at least comparisons to Variations – heap can be min (max) heap See all the input – can we provide tighter lower bound ? - heap can be k-ary tree instead of binary tree Decision Tree model – abstraction of comparison sorts Data Structures for dynamic sets – need to support -different algorithms follow different path in the decision tree efficiently basic operations (insert, delete, minimum, search) - there are at least n! leaves e.g. priority queues - decision tree for sorting n-elements has height - any sorting algorithm using comparisons takes at least on the order of n lg n operations 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us