The Weyl Tensor Introduction, Properties and Applications

The Weyl Tensor Introduction, Properties and Applications

The Weyl Tensor Introduction, properties and applications David Wichmann Dec 06, 2016 1 / 24 Overview 1. Motivation 2. Derivation and properties of the Weyl Tensor 3. Where the Weyl Tensor appears 4. Application: Classification of Spacetimes using the Weyl Tensor (Petrov Classification) 2 / 24 Motivation 1 G = R − Rg = κT µν µν 2 µν µν I Algebraic equations for the traces of the Riemann Tensor I Determine 10 components of the Riemann Tensor I No direct visibility of curvature propagation Traceless part of Rαβγδ is the Weyl tensor, Cαβγδ . 3 / 24 Decomposition of Curvature Tensor Definition For Aαβ symmetric, define: ∗ Aαβγδ = Aαγgβδ + Aβδgαγ − Aαδgβγ − Aβγgαδ ∗ Aαβγδ fulfills: ∗ ∗ 1. Aαβγδ = −Aαβδγ ∗ ∗ 2. Aαβγδ = Aγδαβ ∗ ∗ ∗ 3. Aαβγδ + Aαγδβ + Aαδβγ = 0 Possible Ansatz ∗ ∗ Rαβγδ = Cαβγδ + ARαβγδ + BRgαβγδ; A; B 2 R. 4 / 24 The Weyl Tensor 1 C = R − (R g + R g − R g − R g ) αβγδ αβγδ n − 2 αγ βδ βδ αγ αδ βγ βγ αδ 1 + R(g g − g g ) (n − 1)(n − 2) αγ βδ βγ αδ See for example: H.-J. Schmidt, Gravitoelectromagnetism and other decompositions of the Riemann tensor (2004, arXiv:gr-qc/04070531v1) Get a propagation equation: n − 3 1 rαC = κ r T − r T − (r Tg − r Tg ) αβγδ n − 2 γ βδ δ βγ n − 1 γ βδ δ βγ See for example: Matthias Blau, Lecture Notes on General Relativity (ttp://www.blau.itp.unibe.ch/Lecturenotes.html) 5 / 24 Weyl Tensor Properties 1. Same algebraic symmetries as Riemann Tensor αγ 2. Traceless: g Cαβγδ = 0 3. Conformally invariant: I That means: 2 ~α α g~αβ = Ω (x)gαβ ) C βγδ = C βγδ 6( 2 I C = 0 is sufficient condition for gαβ = Ω ηαβ in n ≥ 4 4. Vanishes identically in n < 4 5. In vacuum it is equal to the Riemann tensor. 6 / 24 Applications of the Weyl tensor I Vacuum GR: Geodesic deviation, gravitational waves, ... I Cosmology: Weyl Curvature Hypothesis and isotropic singularities 1 2 I Weyl Tensor is small at initial singularities 2 ∗ ∗ I g = Ω g , g regular at t = 0: αβγδ α CαβγδC lim C βγδ < 1; lim µν = 0 t!0 t!0 Rµν R I Alternative theories of gravity: 2 α R p αβγδ I C gravity: S = − 4 −gCαβγδC 3 I Non-minimal coupling to other fields: R p αβγδ Sint = α −gFαβFγδC 1 see e.g. Goode et. al 1992: http://iopscience.iop.org/article/10.1088/0264-9381/9/2/010/pdf 2 Penrose 1979: General Relalivity: An Einstein Centenary Survey 3 Chen et al.: Strong gravitational lensing for the photons coupled to Weyl tensor in a Kerr black hole spacetime, 2016 7 / 24 The Petrov Classification 8 / 24 The Petrov Classification: Mathematical Preliminaries I Definition (Bivector Space B(p)) Space of second order skew symmetric contravariant tensors X αβ at point p 2 M: X 2 B(p) ! X αβ = −X βα: B(p) is a 6-dimensional space. Notation (Bivector indices) X αβ : αβ = f01; 02; 03; 23; 31; 12g X A : A = f1; 2; 3; 4; 5; 6g 0 I3×3 ! AB = I3×3 0 9 / 24 The Petrov Classification: Mathematical Preliminaries II 1. Weyl Tensor as linear map: C : B(p) !B(p) B B X 7! CAB X 2. Eigenvalue equation: C(X ) = λX ; λ 2 C 3. In coordinates B (CAB − λGAB )X = 0 GAB ≡ Gαβγδ = ηαγηβδ − ηαδηβγ = diag(−1; −1; −1; 1; 1; 1) 10 / 24 The Petrov Classification: Mathematical Preliminaries III Definition (Hodge Duality Transformation) ? : B(p) !B(p) A ? A A B X 7! X = B X Definition (Hodge dual of Weyl Tensor) Weyl tensor as double-bivector ! define left and right dual: ? D CAB := A CDB ? D CAB := B CAD 11 / 24 The Petrov Classification: Magic of the Weyl Tensor I Can show: ?? ?? I Minkowski space: X = −X = X ? ? I Duality property: C( X ) = C (X ) ? ? I Tracelessnes of the Weyl Tensor: C = C Definition ((Anti-)self-dual Bivector) + ? I X 2 B(p) is self-dual, X 2 S (p), if X = −iX − ? I X 2 B(p) is anti-self-dual, X 2 S (p), if X = iX It follows for X 2 B(p): 1. X + := X + i ?X 2 S+(p) 2. X − := X − i ?X 2 S−(p) A 3. X 2 S+(p) , X = iA 12 / 24 The Petrov Classification: Magic of the Weyl Tensor II + The restricted Weyl tensor CjS+ is an automorphism on S (p). C + = C + i ?C maps S−(p) to zero: X 2 S+(p) ! C +(X ) = [C + i ?C](X ) = 2C(X ) X 2 S−(p) ! C +(X ) = [C + i ?C](X ) = 0 For C; X real, C −(X −) = C +(X +). That is, it is enough to study the Eigenvalue equation of C +, as they have to occur in complex conjugate pairs! 13 / 24 Petrov Classification: Constructing the Weyl Tensor Use: 1. Symmetry CAB = CBA α 2. Tracelessnes C βαδ = 0 3. Algebraic Bianchi Identity Cαβγδ + Cαδβγ + Cαγδβ = 0 One finds: MN M − iN N + iM Q −iQ C = ! C + = := N −M N + iM −M + iN −iQ −Q M; N real traceless symmetric 3 × 3 matrices. For X 2 S+(p) ! X = (A; iA)T for 3-dim vector A. We get the Eigenvalue equation QA = λA. 14 / 24 Finding eigenvalues I Complex symmetric 3 × 3 matrix Q. −1 I Similarity transformations, Q ! P QP. Same eigenvalues, rank, characteristic and minimal polynomials I In general, Q not diagonalizable (only if real) I Best we can do is construct the Jordan normal form I Cayley-Hamilton Theorem: Every matrix fulfills its own characteristic equation 15 / 24 Some linear algebra: Example 1 0a 0 01 −1 P QP = @0 a 0A 0 0 b ! (a − λ)2(b − λ) = 0 Cayley-Hamilton ! minimal polynomial: (Q − aI)(Q − bI) = 0 16 / 24 Some linear algebra: Example 2 0a 1 01 −1 P QP = @0 a 0A 0 0 b ! (a − λ)2(b − λ) = 0 Cayley-Hamilton ! minimal polynomial: 2 (Q − aI) (Q − bI) = 0 Dimension of Eigenvectors of λ = a (geometric multiplicity) is 1, less than the algebraic multiplicity 2! 17 / 24 The Petrov Types Based on the Eigenvalues of the Matrix Q: From tracelessnes of the matrix Q: λ1 + λ2 + λ3 = 0 I Type I: All eigenvalues different ! dimension of eigenspaces is 3 I Type D: One double eigenvalue with eigenspace-dimension 2 I Type II: One double eigenvalue with eigenspace-dimension 1 I Type III: All eigenvalues equal to zero. 1-dimensional eigenspace I Type N: All eigenvalues equal to zero. 2-dimensional eigenspaces. I Type O: All eigenvalues equal to zero. 3-dimensional eigenspaces, i.e. C=0 18 / 24 Penrose Diagram for Petrov Types 19 / 24 The Petrov Types (other formulation) Based on the Eigenvalues of the Matrix Q: Use Caley-Hamilton theorem: Every similar matrix fulfills the same minimal polynomial. Type Eigenvalues Minimal Polynomial I fλ1; λ2; λ3g (Q − λ1I )(Q − λ2I )(Q − λ3I ) = 0 D fλ1; λ1; λ2 = −2λ1g (Q − λ1I )(Q − λ2I ) = 0 2 II fλ1; λ1; λ2 = −2λ1g (Q − λ1I ) (Q − λ2I ) = 0 3 III fλ1 = λ2 = λ3 = 0g Q = 0 2 N fλ1 = λ2 = λ3 = 0g Q = 0 O fλ1 = λ2 = λ3 = 0g Q = 0 20 / 24 Some examples from physics Spacetime Petrov Type Spherically Symmetric spacetimes D Kerr D FLRW O Transversal gravitational waves N 21 / 24 More physics... Vacuum curvature tensor of an isolated matter distribution obeys under certain assumptions: N III D R = αβγδ + αβγδ + αβγδ + ::: αβγδ r r 2 r 3 (See for example H. Stephani: Relativity, 2004) 22 / 24 Literature I G. S. Hall: Symmetries and Curvature Structure in General Relativity. World Scientific Publishing Company (April 29, 2004) I Joan Mart inez i Portillo: Classification of Weyl and Ricci Tensors (Bachelor's Thesis, 2015/16) 4 I A. Papapetrou: Lectures on general relativity. Springer Science & Business Media, 2012. I H. Stephani: Relativity: An Introduction to Special and General Relativity, Cambridge University Press (March 29, 2004) 4 https://upcommons.upc.edu/bitstream/handle/2117/87155/memoria.pdf?sequence=1&isAllowed=y 23 / 24 That's it. 24 / 24.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us