3.2 the Derivative As a Function 201

3.2 the Derivative As a Function 201

SECT ION 3.2 The Derivative as a Function 201 SOLUTION Figure (A) satisfies the inequality f .a h/ f .a h/ f .a h/ f .a/ C C 2h h since in this graph the symmetric difference quotient has a larger negative slope than the ordinary right difference quotient. [In figure (B), the symmetric difference quotient has a larger positive slope than the ordinary right difference quotient and therefore does not satisfy the stated inequality.] 75. Show that if f .x/ is a quadratic polynomial, then the SDQ at x a (for any h 0) is equal to f 0.a/ . Explain the graphical meaning of this result. D ¤ SOLUTION Let f .x/ px 2 qx r be a quadratic polynomial. We compute the SDQ at x a. D C C D f .a h/ f .a h/ p.a h/ 2 q.a h/ r .p.a h/ 2 q.a h/ r/ C C C C C C C 2h D 2h pa2 2pah ph 2 qa qh r pa 2 2pah ph 2 qa qh r C C C C C C C D 2h 4pah 2qh 2h.2pa q/ C C 2pa q D 2h D 2h D C Since this doesn’t depend on h, the limit, which is equal to f 0.a/ , is also 2pa q. Graphically, this result tells us that the secant line to a parabola passing through points chosen symmetrically about x a is alwaysC parallel to the tangent line at x a. D D 76. Let f .x/ x 2. Compute f .1/ by taking the limit of the SDQs (with a 1) as h 0. D 0 D ! SOLUTION Let f .x/ x 2. With a 1, the symmetric difference quotient is D D 1 1 2 2 f .1 h/ f .1 h/ .1 h/2 .1 h/2 .1 h/ .1 h/ 4h 2 C C C : 2h D 2h D 2h.1 h/2.1 h/ 2 D 2h.1 h/2.1 h/ 2 D .1 h/2.1 h/ 2 C C C Therefore, 2 f 0.1/ lim 2: D h 0 .1 h/2.1 h/ 2 D ! C 3.2 The Derivative as a Function Preliminary Questions 1. What is the slope of the tangent line through the point .2; f .2// if f .x/ x3? 0 D SOLUTION The slope of the tangent line through the point .2; f .2// is given by f .2/ . Since f .x/ x3, it follows that 0 0 D f .2/ 23 8. 0 D D 2. Evaluate .f g/ 0.1/ and .3f 2g/ 0.1/ assuming that f 0.1/ 3 and g0.1/ 5. C D D SOLUTION .f g/ .1/ f .1/ g .1/ 3 5 2 and .3f 2g/ .1/ 3f .1/ 2g .1/ 3.3/ 2.5/ 19 . 0 D 0 0 D D C 0 D 0 C 0 D C D 3. To which of the following does the Power Rule apply? (a) f .x/ x2 (b) f .x/ 2e D D (c) f .x/ xe (d) f .x/ ex D D (e) f .x/ xx (f) f .x/ x 4=5 D D SOLUTION (a) Yes. x2 is a power function, so the Power Rule can be applied. (b) Yes. 2e is a constant function, so the Power Rule can be applied. (c) Yes. xe is a power function, so the Power Rule can be applied. (d) No. ex is an exponential function (the base is constant while the exponent is a variable), so the Power Rule does not apply. (e) No. xx is not a power function because both the base and the exponent are variable, so the Power Rule does not apply. 4=5 (f) Yes. x is a power function, so the Power Rule can be applied. 4. Choose (a) or (b). The derivative does not exist if the tangent line is: (a) horizontal (b) vertical. SOLUTION The derivative does not exist when: (b) the tangent line is vertical. At a horizontal tangent, the derivative is zero. 202 CHAPTER 3 DIFFERENTIATION 5. Which property distinguishes f .x/ ex from all other exponential functions g.x/ bx? D D SOLUTION The line tangent to f .x/ ex at x 0 has slope equal to 1. D D Exercises In Exercises 1–6, compute f 0.x/ using the limit definition. 1. f .x/ 3x 7 D SOLUTION Let f .x/ 3x 7. Then, D f .x h/ f .x/ 3.x h/ 7 .3x 7/ 3h f 0.x/ lim C lim C lim 3: D h 0 h D h 0 h D h 0 h D ! ! ! 2. f .x/ x2 3x D C SOLUTION Let f .x/ x2 3x . Then, D C f .x h/ f .x/ .x h/ 2 3.x h/ .x 2 3x/ f 0.x/ lim C lim C C C C D h 0 h D h 0 h ! ! 2xh h2 3h lim C C lim .2x h 3/ 2x 3: D h 0 h D h 0 C C D C ! ! 3. f .x/ x3 D SOLUTION Let f .x/ x3. Then, D f .x h/ f .x/ .x h/ 3 x3 x3 3x 2h 3xh 2 h3 x3 f 0.x/ lim C lim C lim C C C D h 0 h D h 0 h D h 0 h ! ! ! 3x 2h 3xh 2 h3 lim C C lim .3x 2 3xh h2/ 3x 2: D h 0 h D h 0 C C D ! ! 4. f .x/ 1 x 1 D SOLUTION Let f .x/ 1 x 1. Then, D 1 1 .x h/ x 1 x h 1 x C f .x h/ f .x/ x.x h/ 1 1 f 0.x/ lim C lim C lim C lim : D h 0 h D h 0 h D h 0 h D h 0 x.x h/ D x2 ! ! ! ! C 5. f .x/ x px D SOLUTION Let f .x/ x px. Then, D f .x h/ f .x/ x h px h .x px/ px h px px h px f 0.x/ lim C lim C C 1 lim C C C D h 0 h D h 0 h D h 0 h px h px ! ! ! ! C C .x h/ x 1 1 1 lim C 1 lim 1 : D h 0 h. px h px/ D h 0 px h px D 2px ! C C ! C C 6. f .x/ x 1=2 D SOLUTION Let f .x/ x 1=2 . Then, D 1 1 p f .x h/ f .x/ px h px px x h f 0.x/ lim C lim C lim C D h 0 h D h 0 h D h 0 hpx hpx ! ! ! C Multiplying the numerator and denominator of the expression by px px h, we obtain: C C px px h px px h x .x h/ f 0.x/ lim C C C lim C D h 0 hpx hpx px px h D h 0 hpx hpx. px px h/ ! C C C ! C C C 1 1 1 lim : D h 0 px hpx. px px h/ D pxpx.2 px/ D 2x px ! C C C SECT ION 3.2 The Derivative as a Function 203 In Exercises 7–14, use the Power Rule to compute the derivative. d 7. x4 dx ˇx 2 ˇ D ˇ d 4 3 d 4 3 SOLUTION ˇ x 4x so x 4. 2/ 32 . dx D dx D D ˇx 2 ˇ D d ˇ 8. t 3 ˇ dt ˇt 4 ˇ D ˇ d 3 4 d 3 4 3 SOLUTION ˇ t 3t so t 3.4/ . dt D dt D D 256 ˇt 4 ˇ D d ˇ 9. t2=3 ˇ dt ˇt 8 ˇ D ˇ d 2=3 2 1=3 d 2=3 2 1=3 1 SOLUTION ˇ t t so t .8/ . dt D 3 dt D 3 D 3 ˇt 8 ˇ D d ˇ 10. t 2=5 ˇ dt ˇt 1 ˇ D ˇd 2=5 2 7=5 d 2=5 2 7=5 2 SOLUTION ˇ t t so t .1/ . dt D 5 dt D 5 D 5 ˇt 1 ˇ D d ˇ 11. x0:35 ˇ dx d 0:35 0:35 1 0:65 SOLUTION x 0:35.x / 0:35x : dx D D d 12. x14=3 dx d 14=3 14 .14=3/ 1 14 11=3 SOLUTION x x x : dx D 3 D 3 d 13. tp17 dt d p17 p17 1 SOLUTION t p17t dt D d 2 14. t dt d 2 2 2 1 SOLUTION .t / t dt D In Exercises 15–18, compute f .x/ and find an equation of the tangent line to the graph at x a. 0 D 15. f .x/ x4, a 2 D D 4 3 SOLUTION Let f .x/ x . Then, by the Power Rule, f 0.x/ 4x . The equation of the tangent line to the graph of f .x/ at x 2 is D D D y f .2/.x 2/ f .2/ 32.x 2/ 16 32x 48: D 0 C D C D 16. f .x/ x 2, a 5 D D 2 3 SOLUTION Let f .x/ x . Using the Power Rule, f 0.x/ 2x . The equation of the tangent line to the graph of f .x/ at x 5 is D D D 2 1 2 3 y f .5/.x 5/ f .5/ .x 5/ x : D 0 C D 125 C 25 D 125 C 25 17.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us