Semantic Annotation of Music Collections: A Computational Approach Mohamed Sordo TESI DOCTORAL UPF / 2011 Directors de la tesi: Dr. Xavier Serra i Casals Dept. of Information and Communication Technologies Universitat Pompeu Fabra, Barcelona, Spain Dr. Òscar Celma i Herrada Gracenote, Emeryville, CA, USA Copyright c Mohamed Sordo, 2011. Dissertation submitted to the Department of Information and Communication Technologies of Universitat Pompeu Fabra in partial fulfillment of the require- ments for the degree of DOCTOR PER LA UNIVERSITAT POMPEU FABRA, with the mention of European Doctor. Music Technology Group (http://mtg.upf.edu), Dept. of Information and Communica- tion Technologies (http://www.upf.edu/dtic), Universitat Pompeu Fabra (http://www. upf.edu), Barcelona, Spain. A Radia, Idris y Randa. Me siento muy orgulloso de ser vuestro hijo y tu hermano. A toda mi familia. Acknowledgements During these last few years, I had the luck to work with an amazing group of people at the Music Technology Group. First and foremost, I would specially like to thank 3 people regarding this dissertation. Xavier Serra, for giving me the opportunity to join the Music Technology Group, and for his wise advices in key moments of the thesis work. Òscar Celma, for being the perfect co- supervisor a post–graduate student can have. Whether it was for guidance or for publishing, he was always there. Fabien Gouyon, who would have been without any doubt the third supervisor of this thesis. I especially thank him for giving me the opportunity to join his research group in the wonderful city of Porto, as a research stay. I also want to thank many other MTG people who have given me knowledge and moral support throughout these years. In no specific order, thanks to Perfecto Herrera, Hendrik Purwins, Rafael Ramírez, Dmitry Bogdanov and Joan Serrà for solving my machine learning doubts. To Pedro Cano, from whom the idea of automatic labeling using audio similarity was first taken. To Cyril Laurier and Martín Blech, for the work and fun in our joint publications and in the European Project PHAROS. To Nicolas Wack, for his amazing work providing tools and knowledge for efficiently extracting, transforming and classifying audio excerpts. To Oscar Mayor, for the long talks about the last trends in technology. To José Zapata and Jordi Sesmero, for being very good friends. To Justin Salamon, Luís Sarmento, Graham Coleman, Ferdinand Fuhrmann, Martin Haro, Piotr Holonowicz, Amaury Hazan, Ricard Marxer, Owen Meyers, Elena Martínez, Jordi Funollet, Jens Grivolla, Koppi, Eduard Aylon, Enric Guaus, Emilia Gómez, Andreas Beisler, José Pedro and Pablo García. Sorry if I forgot anyone. To the amazing MTG administration staff, Cristina Garrido and Alba Rosado. To Lydia García, who helped me to put all the paperwork in order. To my new MTG roommates, Sankalp Gulati, Gopala Koduri, and Sertan Şenturk. Sertan should know that I owe him a big one. To Robin Motheral, for proofreading some parts of this thesis. Robin is awesome. This research was conducted at the Music Technology Group of Universitat Pompeu Fabra (UPF) in Barcelona, from September 2007 to March 2010 and from July 2010 to December 2011, and at the INstituto de Engenharia de Sistemas e Computadores (INESC) do Porto in Porto, Portugal, from April 2010 to June 2010. This work has been supported by an R+D+I scholarship from UPF, by the European Commission projects PHAROS (IST-2006-045035) and VARIAZIONI (ECP-2005-CULT-038264). The research stay at the INESC was funded by Ministerio de Educación in Spain as a mobility program of PhD students to obtain the mention of “European doctor”. v Abstract Music consumption has changed drastically in the last few years. With the arrival of digital music, the cost of production has substantially dropped. The expansion of the World Wide Web has helped to promote the exploration of many more music content. Online stores, such as iTunes or Amazon, own music collections in the order of millions of songs. Accessing these large collections in an effective manner is still a big challenge. In this dissertation we focus on the problem of annotating music collections with semantic words, also called tags. The foundations of all the methods used in this dissertation are based on techniques from the fields of information retrieval, machine learning, and signal processing. We propose an automatic music annotation algorithm that uses content-based audio similarity to propa- gate tags among songs. The algorithm is evaluated extensively using multiple music collections of varying size and quality of the data, including a large music collection of more than a half million songs, annotated with social tags derived from a music community. We assess the quality of our proposed algorithm by comparing it with several state of the art approaches. We also discuss the importance of using evaluation measures that cover different dimensions; per– song and per–tag evaluation. Our proposal achieves state of the art results, and has ranked high in the MIREX 2011 evaluation campaign. The obtained results also show some limitations of automatic tagging, related to data incon- sistencies, correlation of concepts and the difficulty to capture some personal tags with content information. This is more evident in music communites, where users can annotate songs with any free text word. In order to tackle these issues, we present an in-depth study of the nature of music folksonomies. We concretely study whether tag annotations made by a large community (i.e. a folksonomy) correspond with a more controlled, structured vocabulary by experts in the music and the psychology fields. Results reveal that some tags are clearly defined and understood both by the experts and the wisdom of crowds, while it is difficult to achieve a common consensus on the meaning of other tags. Finally, we extend our previous work to a wide range of semantic concepts. We present a novel way to uncover facets implicit in social tagging, and classify the tags with respect to these semantic facets. The latter findings can help to understand the nature of social tags, and thus be beneficial for further improvement of semantic tagging of music. Our findings have significant implications for music information retrieval sys- tems that assist users to explore large music collections, digging for content they might like. vii Resumen El consumo de la música ha cambiado drásticamente en los últimos años. Con la llegada de la música digital, el coste de producción se ha reducido conside- rablemente. La expansión de la Web ha ayudado a promover la exploración de mucho más contenido musical. Algunas tiendas musicales on-line, como iTu- nes o Amazon, poseen millones de canciones en sus colecciones. Sin embargo, acceder a estas colecciones de una manera eficiente es todavía un gran reto. En esta tesis nos centramos en el problema de anotar colecciones musicales con palabras semánticas, también conocidas como tags. Los métodos utilizados en esta tesis están cimentados sobre los campos de recuperación de la información, la inteligencia artifical, y el procesamiento del señal. Proponemos un algorit- mo para anotar música automáticamente, usando similitud de audio a nivel de contenido para propagar tags entre canciones. El algoritmo se evalúa exten- samente usando múltiples colecciones musicales de distinto tamaño y calidad de los datos, incluyendo una colección de más de medio millón de canciones, anotadas con tags sociales derivados de una comunidad musical. Evaluamos la calidad de nuestro algoritmo mediante una comparación con algoritmos del estado del arte. Adicionalmente, discutimos la importancia de usar medidas de evaluación que cubren diferentes dimensiones; es decir, evaluaciones a nivel de canción y a nivel de tag. Nuestro algoritmo ha sido evaluado y se ha clasificado en altas posiciones en el concurso de evaluación internacional MIREX 2011. Los resultados obtenidos también demuestran algunas limitaciones de la anotación automática, relacionadas con las inconsistencias en los datos, la correlación de conceptos y la dificultad de capturar algunos tags personales con información del contenido. Esto es más evidente en las comunidades musicales, donde los usuarios pueden anotar canciones con cualquier palabra, sea esta contextual o no. Con el fin de abordar estas limitaciones, presentamos un amplio estudio so- bre la naturaleza de las folksonomías musicales. Concretamente, estudiamos si las anotaciones hechas por una gran comunidad de usuarios concuerdan con un vocabulario más controlado y estructurado por parte de expertos en el campo. Los resultados revelan que algunos tags están claramente definidos y compren- didos tanto desde el punto de vista de los expertos como el de la sabiduría popular, mientras que hay otros tags sobre los cuales es difícil encontrar un consenso. Por último, extendemos nuestro previo trabajo a un amplio abani- co de conceptos semánticos. Presentamos un método novedoso para descubrir conceptos semánticos implícitos en los tags sociales, y clasificar dichos tags con respecto a los conceptos semánticos. Los últimos hallazgos pueden ayudar a entender la naturaleza de los tags sociales, y por consiguiente ser beneficiales para una adicional mejora para la anotación automática de la música. ix Resum El consum de la música ha canviat dràsticament en els últims anys. Amb l’arribada de la música digital, el cost de producció s’ha reduït considerable- ment. L’expansió de la Web ha ajudat a promoure l’exploració de molt més contingut musical. Algunes botigues musicals on-line, com iTunes o Amazon, posseeixen milions de cançons a les seves col.leccions. No obstant, accedir a aquestes col.leccions d’una manera eficient és encara un gran repte. En aquesta tesis ens centrem en el problema d’anotar col.leccions musicals amb paraules semàntiques, també conegudes com tags. Els mètodes utilit- zats en aquesta tesi estan fonamentats sobre els camps de recuperació de la informació, l’intel.ligència artificial, i el processament del senyal.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages239 Page
-
File Size-