Supersonic Flow on Finite Thickness Wings!

Supersonic Flow on Finite Thickness Wings!

Section 7, Lecture 2: " Supersonic Flow on Finite Thickness Wings! • Concept of Wave Drag! • Anderson, Chapter 4, pp. 174-179 ! 1! MAE 5420 - Compressible Fluid Flow! Supersonic Airfoils! • Recall that for a leading edge in Supersonic flow there is! γ=1.1! a maximum wedge angle at which the oblique shock wave! remains attached ! γ=1.3! • Beyond that angle! γ=1.1! γ=1.05! γ=1.4! shock wave becomes! γ=1.2! detached from! =1.3! γ leading edge! γ=1.4! % 2 M 2 sin2 1 ' −1 { 1 (βmax ) − } θmax = tan ) * ) tan β %2 + M 2 %γ + cos 2β '' * & ( max )& 1 & ( max )(( ( % M 2 ( 1) 4 16( 1) 8M 2 ( 2 1) M 4 ( 1)2 ' 1 −1 ( 1 γ − + ) − γ + + 1 γ − + 1 γ + β = cos ) * max 2 2γ M 2 &) 1 (* 2! MAE 5420 - Compressible Fluid Flow! Section 6: Home Work 1(continued) g = 1.25 MAE 5420 - Compressible Fluid Flow Section 6: Home Work 1(Part 2 continued) g = 1.4 MAE 5420 - Compressible Fluid Flow Supersonic Airfoils (cont’d)! • Normal Shock wave formed off the front of a blunt leading! γ=1.1! causes significant drag! Detached shock waveγ!=1.3! Localized normal shock wave! Credit: Selkirk College Professional Aviation Program! 3! MAE 5420 - Compressible Fluid Flow! Supersonic Airfoils (cont’d)! • To eliminate this leading edge drag caused by detached bow wave ! Supersonic wings are typically quite sharp atγ=1.1 the! leading edge ! • Design feature allows oblique wave to attachγ=1.3 to !the leading edge ! eliminating the area of high pressure ahead of the wing. ! • Double wedge or “diamond”! Airfoil section! Credit: Selkirk College Professional Aviation Program! 4! MAE 5420 - Compressible Fluid Flow! Supersonic Airfoils (cont’d)! •When supersonic airfoil is at positive ! angleγ=1.1 of! attack shock wave ! at the top leading edge is weakened ! and the one at the bottom is intensified. ! γ=1.3! • Result is the airflow over the top ! of the wing is now faster.! • Airflow will also be accelerated ! through the expansion fans. ! • The fan on the top will be stronger ! than the one on the bottom. ! • Result is faster flow and therefore ! Credit: Selkirk College Professional Aviation Program! lower pressure on the top of the airfoil.! • We already have all of the tools we need to analyze the flow on this wing! 5! MAE 5420 - Compressible Fluid Flow! Supersonic Flow on" Finite Thickness Wings at zero α! Drag = b[ p2 − p3 ]t • Symmetrical Diamond-wedge airfoil, zero angle of attack! t / 2 D = 2b p l sin(ε) − p l sin(ε) ⇒ sin(ε) = rag [ 2 3 ] l Drag = b[ p2 − p3 ]t 6! MAE 5420 - Compressible Fluid Flow! Supersonic Flow on" Finite Thickness Wings at zero α! Drag = b[ p2 − p3 ]t • Look at pressure difference, p2-p3! • Oblique shock wave from region 1->2 .. p2 >p∞" ∞ Εξπανσιον φaν φροµ ρεγιον 2---> 3 ... π3 < π2! ... p >p > Δ > 0 ! 7! MAE 5420 - Compressible Fluid Flow! 2 ∞ ραγ Supersonic Flow on" Finite Thickness Wings at zero α! Lift Fp α α Drag • Compare to Flat Plate! # p p & l − u % p p ( $ ∞ ∞ ' C = 0! CL = cosα D * γ 2 - M +, 2 ∞ ./ 8! MAE 5420 - Compressible Fluid Flow! Compare to wing in subsonic flow! 2! Mach 1! 3! A0 A1 A0 A0 A1 A0 • from Bernoulli! 2 2 _ dx " γ 2 % P p Cp q p 1 Cp M pdx = P0 0 = + max = $ + max ' ⇒ ∫ ∫ # 2 & 1 1 f [M ] P P 3 3 2 3 p = 0 = 0 dx dx pdx = P0 = −P0 ⇒ pdx =0 " γ 2 % f [M ] ∫ ∫ ∫ ∫ 1+ Cpmax M 2 2 f [M ] 1 f [M ] 1 #$ 2 &' 9! MAE 5420 - Compressible Fluid Flow! Compare to wing in subsonic flow (cont’d)! 2 2 dx • at zero lift .. Subsonic wings in! pdx = P ∫ 0 ∫ inviscid flow have No-drag!! 1 1 f [M ] 3 3 dx 2 dx 3 pdx = P = −P ⇒ pdx =0 ∫ 0 ∫ 0 ∫ ∫ 2 2 f [M ] 1 f [M ] 1 • Known as d'Alembert's Paradox … • Subsonic flow over wings … induced drag (drag due to lift) + viscous drag 10! MAE 5420 - Compressible Fluid Flow! Supersonic Wave Drag! • Finite Wings in Supersonic Flow have drag .. Even! at zero angle of attack and no lift and no viscosity…. “wave drag”! • Wave Drag coefficient is proportional to thickness ratio (t/c)! Drag p2 − p3 $ t ' C = = [ ] D wave _ & ) γ 2 % ( bcq p M c 2 ∞ • Supersonic flow over wings … induced drag (drag due to lift) + viscous drag + wave drag 11! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" • 5° ramps, M∞ = 2.00! Airfoil! • Total chord: 2 meters! • Look at flow properties across ! each of the numbered regions! • Fineness ratio (t/c): 0.08749! 3! 5! 7! 1! 6! 2! 4! 12! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil (cont’d)! • Across region 1-2 … Oblique shock! δ2 = 5°>β2=34.302°, π2/π1=1.3154, M2=1.8213! M∞ = 2.00! 3! 5! 7! 1! 6! 2! 4! 13! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil (cont’d)! • Across region 2-4 … expansion fan! M2=1.8213! δ4 = -10°> π4/π2=0.5685, p4/π1=0.7478, M4=2.1848! M∞ = 2.00! 3! 5! 7! 1! 6! 2! 4! 14! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil (cont’d)! • Across region 1-3 … Oblique shock! δ3 = 5°>β3=34.302°, π3/π1=1.3154, M3=1.8213! M∞ = 2.00! 3! 5! 7! 1! 6! 2! 4! 15! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil (cont’d)! • Across region 3-5 … expansion fan! M3=1.8213! δ5 = -10°> π5/π3=0.5685, p5/π1=0.7478, M5=2.1848! M∞ = 2.00! 3! 5! 7! 1! 6! 2! 4! 16! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil … Drag! • Calculate Drag Coefficient! π2/π1=1.3154! M∞ = 2.00! π3/π1=1.3154! p /π =0.7478! 3! 5! 7! 4 1 1! p5/π1=0.7478! 2! 4! 6! 1.3154 + 1.3154 0.7478 + 0.7478 $ % 0.08749 )1 " p2 p3 % 1 " p4 p5 % , " − # + $ + ' − $ + ' . 2 2 *2 # p∞ p∞ & 2 # p∞ p∞ & - " t % C = = 1.4 2 D wave $ ' γ 2 # c& 2 M 2 =0.01774! 2 17! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil … Drag (cont’d)! • Plot wave drag! Mach 2.0! versus thickness ratio! 0° α! Drag p2 − p3 $ t ' C = = [ ] D wave _ & ) γ 2 % ( bcq p M c 2 ∞ Thickness ratio! 18! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil … Drag (cont’d)! • Look at mach number ! Effect on wave drag! Increasing mach! • Mach Number tends! to suppress wave drag! Thickness ratio! 19! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil … Drag (cont’d)! • How About The! Compression! effect of angle of! “Induced” drag! attack on drag ! Wave drag! +! α=0°' =! 20! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil … Drag (cont’d)! Mach 2.0! Total drag! Increasing t/c! 21! MAE 5420 - Compressible Fluid Flow! Example: Symmetric Double-wedge" Airfoil … Lift! • Calculate Zero α Lift Coefficient! π2/π1=1.3154! M∞ = 2.00! π3/π1=1.3154! p4/π1=0.7478! p /π =0.7478! 3! 5 1 5! 7! 1! 6! 2! 4! )1 " p2 p4 % 1 " p3 p5 % , + + − + . L 2 #$ p p &' 2 #$ p p &' C = ift! = !* ∞ !!!!!∞ ∞ ∞ - cos[5o ] = 0 •Makes sense! L wave _ γ ( ) bcq M 2 2 22! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (1)! Consider airfoil! = wing half angle! @ positive! δ angle of attack, ! … length … L! • Lower forward! Ramp Angle ! … θ=δ + α" • Upper Forward Ramp Angle … θ=δ α" L! θ > 0 “oblique shock”! θ < 0“expansion fan”! 23! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (2)! • Angle from! δ = wing half angle! 3-5 and 2-4! Is always convex! (expansion), 2δ" • Use Shock-Expansion Theory to calculate Ramp pressures Upper: { P3, P5} Lower: {P2, P4} 24! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (3)! δ = wing half angle! • Upper: { P3, P5} Lower: {P2, P4} • Calculate Normal And Axial Pressure Forces on Wing … Normal Force! *$ L / 2 L / 2 ' $ L / 2 L / 2 ' - Fnormal = b ⋅ ,& P2 ⋅ − P3 ⋅ ) cosδ + & P4 ⋅ − P5 ⋅ ) cosδ / +% cosδ cosδ ( % cosδ cosδ ( . * L L - b ⋅ L = b ⋅ (P2 − P3 ) + (P4 − P5 ) = +*(P2 + P4 ) − (P3 + P5 ).- +, 2 2 ./ 2 25! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (4)! δ = wing half angle! • Upper: { P3, P5} Lower: {P2, P4} • Calculate Normal And Axial Pressure Forces on Wing … Axial Force! *$ L / 2 L / 2 ' $ L / 2 L / 2 ' - Faxial = b ⋅ ,& P2 ⋅ − P4 ⋅ ) sinδ + & P3 ⋅ − P5 ⋅ ) sinδ / +% cosδ cosδ ( % cosδ cosδ ( . * L L - b ⋅ L = b ⋅ (P2 − P4 ) + (P3 − P5 ) tanδ = +*(P2 + P3 ) − (P4 + P5 ).- tanδ +, 2 2 ./ 2 26! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (5)! δ = wing half angle! b ⋅ L Fnormal = "(P2 + P4 ) − (P3 + P5 )$ # % 2 b ⋅ L Faxial = "(P2 + P3 ) − (P4 + P5 )$ tanδ # % 2 • Transform to wind axis! To calculate Lift, Drag! Drag = Faxial cos(α) + Fnormal sin(α) Lift = Fnormal cos(α) − Faxial sin(α) 27! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (6)! δ = wing half angle! b ⋅ L Fnormal = "(P2 + P4 ) − (P3 + P5 )$ # % 2 b ⋅ L Faxial = "(P2 + P3 ) − (P4 + P5 )$ tanδ # % 2 • Transform to wind axis! To calculate Lift, Drag! Drag = Faxial cos(α) + Fnormal sin(α) Lift = Fnormal cos(α) − Faxial sin(α) ( b ⋅ L + ( b ⋅ L + Drag = "(P2 + P3 ) − (P4 + P5 )$ tanδ ⋅ cos(α) + "(P2 + P4 ) − (P3 + P5 )$ ⋅sin(α) )* # % 2 ,- )* # % 2 ,- ( b ⋅ L + ( b ⋅ L + Lift = "(P2 + P4 ) − (P3 + P5 )$ ⋅ cos(α) − "(P2 + P3 ) − (P4 + P5 )$ tanδ ⋅sin(α) )* # % 2 ,- )* # % 2 ,- 28! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (7)! • Collectδ = Termswing half on Drag angle Equation! ! ( b ⋅ L + ( b ⋅ L + Drag = "(P2 + P3 ) − (P4 + P5 )$ tanδ ⋅ cos(α) + "(P2 + P4 ) − (P3 + P5 )$ ⋅sin(α) )* # % 2 ,- )* # % 2 ,- ⇓ # b ⋅ L & # b ⋅ L & # b ⋅ L & # b ⋅ L & Drag = P tanδ ⋅ cos(α) + P ⋅sin(α) + P tanδ ⋅ cos(α) − P ⋅sin(α) $% 2 2 '( $% 2 2 '( $% 3 2 '( $% 3 2 '( # b ⋅ L & # b ⋅ L & # b ⋅ L & # b ⋅ L & + P ⋅sin(α) − P tanδ ⋅ cos(α) − P tanδ ⋅ cos(α) − P ⋅sin(α) = $% 4 2 '( $% 4 2 '( $% 5 2 '( $% 5 2 '( # b ⋅ L & # b ⋅ L & P P $% 2 2 '( $% 3 2 '( [sinδ ⋅ cos(α) + cosδ sin(α)] + [sinδ ⋅ cos(α) − cosδ sin(α)] + cosδ cosδ # b ⋅ L & # b ⋅ L & P P $% 4 2 '( $% 5 2 '( [cosδ ⋅sin(α) − sinδ cos(α)] − [sin(δ)cos(α) + cos(δ)⋅sin(α)] cosδ cosδ 29! MAE 5420 - Compressible Fluid Flow! Pulling it All Together (8)! • Collectδ Terms = wing! half angle! " b ⋅ L % " b ⋅ L % P P #$ 2 2 &' #$ 3 2 &' Drag = [sinδ ⋅ cos(α) + cosδ sin(α)] + [sinδ ⋅ cos(α) − cosδ sin(α)] + cosδ cosδ " b ⋅ L % " b ⋅ L % P P #$ 4 2 &' #$ 5 2 &' [cosδ ⋅sin(α) − sinδ cos(α)] − [sin(δ)cos(α) + cos(δ)⋅sin(α)] cosδ cosδ [sinδ ⋅ cos(α) + cosδ sin(α)] = sin(δ + α ) → → [cosδ ⋅sin(α) − sinδ cos(α)] = sin(δ − α ) Trigonometric Identity! b ⋅ L 2 Drag = P2 sin(δ + α ) + P3 sin(δ − α ) − P4 sin(δ − α) − P5 sin(δ + α ) = cosδ b ⋅ L ,(P2 − P5 )sin(δ + α ) + (P3 − P4 )sin(δ − α ).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us