Ferromagnetic Resonance Spectroscopy: the “Swiss Army Knife” for Understanding Spin–Orbit Phenomena Justin M

Ferromagnetic Resonance Spectroscopy: the “Swiss Army Knife” for Understanding Spin–Orbit Phenomena Justin M

Broadband Ferromagnetic Resonance Spectroscopy: The “Swiss Army Knife” for Understanding Spin–Orbit Phenomena Justin M. Shaw National Institute of Standards and Technology, Boulder, CO 80305, USA 퐻ext 1 IEEE Magnetics Society ieeemagnetics.org 2 3 Outline • Spin-Orbit Interaction • Ferromagnetic Resonance Spectroscopy • Anisotropy and Orbital Moments • Damping and Spin-Pumping • Spin-Orbit Torques 4 Spin-Orbit Interaction “Classical” electron spin orbiting nucleus • In reality, Spin-Orbit is a relativistic effect e • This effective B field leads to a splitting of + energy levels ➔ Fine Structure From the rest frame of the electron spin effective B - field wikipedia e + • In solids the spin-orbit interaction is included as an addition to the Hamiltonian I 퐻 = 휉 푳 ⋅ 푺 푆푂 푆푂 5 Spin-Orbit Phenomena Anomalous Hall Topological Effect Surface States Rashba- Edelstein effect Energy Magnetic Anisotropy Magnetization Direction Spin-Orbit Coupling Orbital Moments in Solids Spin Hall 퐻푆푂 = 휉푆푂푳 ⋅ 푺 Effect Dzyaloshinskii-Moriya Interaction (DMI) Spin-lattice M Weiler Damping Coupling Science, 323, 915 (2009) Beaurepaire PRL 76 (1996) 6 Outline • Spin-Orbit Interaction • Ferromagnetic Resonance Spectroscopy • Anisotropy and Orbital Moments • Damping and Spin-Pumping • Spin-Orbit Torques 7 What happens when we excite a spin? H animations courtesy of Helmut Schultheiss 8 Collective Spin Excitations Ferromagnetic Resonance (FMR) Mode Other Spinwave (Magnon) Modes All spin precess in phase Non-zero phase relationship animations courtesy of Claudia Mewes 9 Landau-Lifshitz Equation Lev Landau Landau-Lifshitz equation dM 0 = − 0 (M H )− M (M H ) dt M s Larmor Term H Evgeny Lifshitz animations courtesy of Helmut Schultheiss 11 Landau-Lifshitz Equation Lev Landau Landau-Lifshitz equation dM 0 = − 0 (M H )− M (M H ) dt M s Larmor Term Damping Term H Evgeny Lifshitz animations courtesy of Helmut Schultheiss 12 Ferromagnetic Resonance (FMR) Cavity Based ➔ single frequency! Constant Frequency, vary angle Srivastava, JAP 85 7841 (1999) A. Okada, PNAS, 114, 3815 (2017) 13 Vector Network Analyzer FMR (VNA-FMR) Images: E8 363C PNA Microwave Network Analyzer| Agilent 4/24/11 2:19 PM 푀푒푓푓(퐻 − 푀푒푓푓) E8363C PNA Microwave Network Analyzer Vector-network-analyzerClose Window 휒(퐻, 푓) = 2 2 (퐻 − 푀푒푓푓) − 퐻푒푓푓 − Δ퐻(퐻 − 푀푒푓푓) 푀eff: Effective magnetization = Ms - Hk Hk: perpendicular anisotropy field 푀S: Saturation magnetization Phase Δ퐻: Linewidth Port 1 Port 2 휑 푆21 = 퐴 푒 휒 퐻, 푓 + 푏푎푐푘푔푟표푢푛푑 Close Window © Agilent 2000-2011 Amplitude Resonance Field, Linewidth 0.32 0.20 ] 0.30 0.18 21 H Im[S 0.28 0.16 http:/ / www.home.agilent.com/ agilent/ product.jspx?cc= US&lc= eng&nid= - 536902643.761694&imageindex= 1 Pa ge 1 of 1 21 Re[S 0.26 0.14 ] 0.24 0.12 50 coplanar waveguide 0.22 0.10 2.85 2.86 2.87 2.85 2.86 2.87 14 0H (T) 0H (T) VNA-FMR 15 Outline • Spin-Orbit Interaction • Ferromagnetic Resonance Spectroscopy • Anisotropy and Orbital Moments • Damping and Spin-Pumping • Spin-Orbit Torques 16 Magnetic Anisotropy Magnetic Anisotropy gives a preferred orientation to the spontaneous magnetization Why important? Can originate from: M • Magnetocrystalline • Interfaces M • Strain (Magnetostriction) • Shape (Magnetostatic energy) ∆E M Energy Seagate Magnetization Direction Duke U Simple model of Anisotropy Energy 휉 ∆E magnetic anisotropy energy 푆푂 ⊥ || SO spin-orbit coupling constant ∆퐸 = 퐴 (휇퐿 − 휇퐿 ) A prefactor (< 0.2) - function of electronic structure 4휇퐵 µL orbital moment P. Bruno, PRB 39, 865 (1989) 17 How do we measure anisotropy? • Angular Dependence of Resonance Field (Hres) sample magnet magnet • Frequency (f) Dependence of Resonance Field (Hres) A. Okada, PNAS, 114, 3815 (2017) Kittel Equation: 1.8 1.6 20 nm Ni Fe (Permalloy) Can include anisotropy terms of any symmetry (see Farle, RPP (1998) for review) 80 20 1.4 H 1.2 || 1.0 푔 휇0휇퐵 (T) 푓(퐻 ) = 퐻 + 퐻 퐻 + 푀 + 퐻 res 0.8 푟푒푠 푟푒푠 퐾 푟푒푠 푒푓푓 퐾 H 0 0.6 2휋ℏ Data 0.4 Fit In-plane anisotropy field 0.2 0.0 Perpendicular anisotropy field -0.2 ⊥ 0 10 20 30 40 50 60 Effective Magnetization: 푀푒푓푓 = 푀푠 − 퐻퐾 Frequency (GHz) 18 How do we measure orbital moments? g-factor relates the spin (μS) and orbital (μL) moments: 2휇 푔 = 2 + 퐿 휇푆 Since μS >> μL , g is typically slightly larger than 2 in ferromagnets • Frequency (f) Dependence of Resonance Field (Hres) Spectroscopic g-factor 1.8 1.6 20 nm Ni80Fe20 (Permalloy) || 1.4 H 푔 휇0휇퐵 1.2 푓(퐻푟푒푠) = 퐻푟푒푠 + 퐻퐾 퐻푟푒푠 + 푀푒푓푓 + 퐻퐾 1.0 2휋ℏ (T) res 0.8 H 0 0.6 Data 0.4 Fit 0.2 0.0 ⊥ Effective Magnetization: 푀푒푓푓 = 푀푠 − 퐻퐾 -0.2 0 10 20 30 40 50 60 Frequency (GHz) 19 g-factor and orbital moments g-factor relates the spin (μS) and orbital (μL) moments: 2휇퐿 푔 = 2 + PROBLEM: Reported values of g-factors 휇 푆 can vary considerably Since μS >> μL , g is typically slightly larger than 2 in ferromagnets Permalloy g−factor Method Frequency Reference Thickness range 5 –50 nm 2.109 ± 0.003 VNA-FMR with 4—60 GHz This work (extrapolated to asymptotic bulk value) analysis PROBLEM: A small error in g leads to 50 nm 2.20 ± 0.12 Einstein-de-Haas — [27] 50 nm 2.0—2.1 PIMM 0—2 GHz [28] large error in μ 50 nm 2.1 PIMM 0—3 GHz [29] L 10 nm 2.05 PIMM 0—3 GHz [29] bulk 2.12 ± 0.02 FMR 19.5 & 26 GHz [30] bulk 2.12 Einstein-de-Haas — [31] 4—50 nm 2.08 ± 0.01 FMR not reported [32] bulk 2.08 ± 0.03 FMR 10 GHz [9] 9 Consider g = 2.05 +/- 0.02 (1% error) bulk 2.12 ± 0.03 FMR 24 GHz [ ] ➔ 40% error in μL 20 g-factor: Asymptotic Analysis f f low up f f low up || 1.6 푔 휇0휇퐵 1.4 1.6 1.2 1.4 푓(퐻푟푒푠) = 퐻푟푒푠 퐻푟푒푠 + 푀 1.2 푒푓푓 (T) 1.0 1.0 2휋ℏ res 0.8 (T) 0.8 H 0.6 res 0 0.6 0.4 Data H Data 0 0.4 0.2 Fit Fit 0.2 2퐾 0.0 푀푒푓푓 = 푀푠 − 0 10 20 30 40 50 60 0.0 휇 푀 0 10 20 30 40 50 60 0 푠 gfit asymptoticallyFrequency approaches (GHz) a valueFrequency as (GHz)fup ➔ ∞ 2.12 We make the assumption that the 2.10 f f 2.08 low up y-intercept20 nm (limit Ni80Fe20 of f ➔ ∞) is the 1.8 1.6 up 2.06 1.4 1.6 1.2 1.4 1.0 intrinsic value of g and M . (T) eff 2.04 0.8 -factor value -factor 1.2 res g 0.6 H 1.0 0 0.4 2.02 (T) Data 0.2 Fit res 0.8 H 0.0 0 Fitted Fitted 2.00 0.6 0 10 20 30 40 50 60 Data 0.4 Frequency (GHz) Can achieve a precision better than Fit 1.98 0.2 0 10 20 30 40 50 60 0.0 0.2 % in permalloy Upper Fitting Frequency, f (GHz) -0.2 up 0 10 20 30 40 50 60 Shaw, JAPFrequency 114 243906 (GHz) (2013) 21 What can cause errors in g-factors • Field misalignment • Higher order anisotropy terms • Rotatable (history dependent) anisotropy • Pinning of local spins • Defects • Interfaces • Excessive fitting parameters • Any missing or field dependent term in Kittel eqn. 22 Application: Co90Fe10/Ni Superlattices H 2.20 ┴ 2.19 g Ni 2.18 3 nm Ta CoFe Ni 2.17 || H 3 nm Cu CoFe g Ni - factor 2.16 CoFe g Ni 2.15 Out-of-plane CoFe/Ni CoFe In-plane Ni 2.14 Multilayer CoFe 0.00 0.05 0.10 0.15 Ni -1 ) 1 / thickness (nm ) CoFe 3 5 nm Cu Ni 6 CoFe J/m 5 3 nm Ta Ni 5 CoFe 4 (10 K 3 •Anisotropy is tuned by 2 varying the thickness. 1 0 Anisotropy, -1 J.M. Shaw, et al., Phys. Rev. B, 87, 054416 (2013) 0.00 0.05 0.10 0.15 -1 1 / thickness (nm ) 23 Application of g-factor analysis: CoFe/Ni A test of Bruno’s theory: K anisotropy energy density || ⊥ spin-orbit coupling constant 휉푆푂푁 (휇퐿 − 휇퐿 ) 퐾 = − 퐴 A prefactor due to electronic structure 4푉 휇퐵 N number atoms per unit cell V volume of unit cell P. Bruno, PRB 39, 865 (1989) 0.020 Fit to the data: B 0.015 A = 0.097 ± 0.007 ) / || 0.010 L Compare to previous reports: A = 0.2 at RT, Au/Co/Au - | | 0.005 D. Weller, et al. PRL 75, 3752 (1995) L ( A = 0.1 at near 0 K, Ni/Pt MLs 0.000 F. Wilhelm, et al. PRL 75, 3752 (1995) 0 1 2 3 4 5 6 5 3 A = 0.05 at near 0 K, Fe/V MLs Anisotropy Energy, K (10 J/m ) Orbital Moment Asymmetry A.Anisimov, et al. PRL 82, 2390 (1999) J.M. Shaw, et al., Phys. Rev. B, 87, 054416 (2013) 24 Outline • Spin-Orbit Interaction • Ferromagnetic Resonance Spectroscopy • Anisotropy and Orbital Moments • Damping and Spin-Pumping • Spin-Orbit Torques 25 Why is damping important? Data Storage & Magnetic Memory (STT-RAM) Spin current source 2-terminal Spin-Transfer Torque (STT) Bit line fixed layer Critical current needed to tunnel barrier switch an MRAM cell free layer 2e M sV Ic0 = H eff g( ) p Nakayama, IEEE Trans Mag. (2010) Mangin APL (2009) Word line Magnonics and Spin Logic Spin-torque nano-oscillators ) 8000 /Hz 2 6000 nV ( 4000 50 nm nano- 500nm 2000 oscillators 0 Spectral Density Spectral 13.10 13.15 13.20 Frequency (GHz) H.Schultheiss, HZDR K.Wang UCLA26 Intrinsic Damping Theories 푑푀 휶 훾 휇0 = − 훾 휇0 푀 × 퐻 − 푀 × 푀 × 퐻 푑푡 푀푠 • Breathing Fermi surface model: Kamberský, V.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    59 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us