A Reverse Hölder Type Inequality for the Logarithmic Mean and Generalizations

A Reverse Hölder Type Inequality for the Logarithmic Mean and Generalizations

A Reverse HÄolder Type Inequality for the Logarithmic Mean and Generalizations John Maloney ¤ Jack Heidel y Josip Pe¸cari¶c z December 13, 1994 Abstract An inequality involving the logarithmic mean is established. Speci¯- cally, we show that ln(c=x) ln(x=a) L(c; x) ln(c=a) L(x; a) ln(c=a) < L(c; a) (1) y¡x where 0 < a < x < c and L(x; y) = ln y¡ln x ; 0 < x < y: Then several generalizations are given. Key words Logarithmic mean, inequality ¤Department of Mathematics University of Nebraska at Omaha 68182 yDepartment of Mathematics University of Nebraska at Omaha 68182 zFaculty of Textile Technology, Zagreb Croatia 1 AMS(MOS) subjeAct classi¯cation 15, 65, 68 1 Introduction The logarithmic mean y x L(y; x) = ¡ 0 < x < y; ln y ln x ¡ has many applications in statistics and economics [8]. It is well known, and easily established [1,3,6,9]that G(y; x) L(y; x) A(y; x) · · where G(y; x) = pxy is the geometric mean and A(y; x) = (x + y)=2 is the arithmetic mean. In fact, writing A(y; x) = M1(y; x) where yp + xp 1=p M (y; x) = p 2 µ ¶ it is known [6] that Mp1(y; x) Mp2(y; x) for p1 p2 It is also known, [4,5,8,11,13], that · · L(y; x) M (y; x) · 1=3 On the other hand, Hlder's inequality states that M (y y ; x x ) M (y ; x )M (y ; x ) 1 1 2 1 2 · p 1 1 q 2 2 if 1=p + 1=q = 1 with p; q > 0: . It is thus curious that the logarithmic mean L(y; x) satis¯es the inequality ln(c=x) ln(x=a) L(c; x) ln(c=a) L(x; a) ln(c=a) < L(c; a) (2) where 0 < a < x < c and it is noted that ln(c=x) ln(x=a) + = 1 ln(c=a) ln(c=a) It is the reverse HÄolder type inequality (1) which is the subject of this note and will be established below. (1) arises in a parameter identi¯cation problem for a fractal Michaelis-Mention equation [7]. In the following, use will be made of Jensen's inequality [10] which we now state for the reader's convenience: 2 1.1. Jensen's Inequality 1). if w > 0 i = 1; 2; : : : ; n i 8 2). ®0; ®1; ®2; : : : ; ®n R 3). © : [0; ) R is 2a strictly convex function then 1 ! n n w ® n w © i=1 i i w ©(® ) i n w · i i Ãi=1 ! i=1 i i=1 X µP ¶ X and the inequality is strict unless ®P0 = ®1 = ®2 = = ®n: ¢ ¢ ¢ 2 Main Result nu Lemma 2.1. Let g(u) = u 1 where g(1) = 1: Then u > 0 i). g is a strictly decreasing¡functin of u 8 ii). iii). lim g(u) = ; lim g(u) = 0; lim g(u) = 1 u 0+ 1 u u 1 iv). g!(1=u) = ug(u). !1 ! Proof: 1 1 Set z(u) = 1 1=u ln u then z 0(u) = u u 1 which is positive for 0 < u < 1 and negativ¡ e for¡ u > 1: Thus z(u) increase¡ from to 0 at u = 1 ¡ ¢ ¡1 and then decreases to as u tends to : Thus g 0(u) is negative except at u = 1. This establishes (i). The¡1 limits in (ii) can1 be computed in the usual fashion using L'hopital's rule. For (iii) we have ln(1=u) g(1=u) = = ug(u): 1=u 1 ¡ ¤ Lemma 2.2. Let f(x) = x ln x, then i). f is decreasing on (0,1) and¡ increasing on (1, ) ii). lim f(x) = ; f(1) = 1; and lim f(x) =1 x 0+ 1 x 1 iii). !if ® > 0; x > 0 then f(®x) =!1f(x) for x = g(®) so that f(®g(®)) = f(g(®)). Proof: (i) and (ii) can be established in the usual way. For (iii) we have f(® x) = f(x) ® x ln(® x) = x ln x (® 1)x = ln ® x = g(®): ) ¡ ¡ ) ¡ ) ¤ Let y(x) denote the left hand side of (1) and set ® = ln c ln a: Note that y(x) > 0 a < x < c. Then ¡ 8 ® ln y = [ln c ln x] [ln (c x) ln(ln c ln x)]+[ln x ln a] [ln(x a) ln(ln x ln a)] ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ 3 and so ® y 0 1 1 1=x = [ln(c x) ln(ln c ln x)] + [ln c ln x] ¡ ¡ + y ¡x ¡ ¡ ¡ ¡ c x ¡ ln c ln x · ¡ ¡ ¸ 1 1 1=x [ln(x a) ln(ln x ln a)] + [ln x ln a] x ¡ ¡ ¡ ¡ x a ¡ ln x ln a · ¡ ¡ ¸ 1 x a ln x ln a 1 1 ln c ln x 1 c x = ln ¡ + ¡ + ¡ ln ¡ x ln x ln a x a ¡ x x ¡ c x ¡ x ln c ln x · · ¡ ¸¸ · ¡ ¸ ¡ · ¡ ¸ 1 a=x 1 1 ln(a=x) 1 ln(c=x) 1 c=x 1 = ln x ¡ + ln x ¡ x ln(a=x) x a=x 1 ¡ x c=x 1 ¡ x ln(c=x) · ¸ · ¸ ¡ ¡ (3) or ® y 1 1 0 = [f(g(a=x)) f(g(c=x))] = h(x) (4) y x ¡ x Now f(g(a=x)) is an increasing function of x while f(g(c=x)) is a decreasing function of x so that h(x) is an increasing function of x. Clearly ®y 0=y is zero at exactly one point which implies that y 0 is zero at exactly one point. Lemma 2.3. y 0 is zero at the point x = pac. Proof: a Now f(g(c=x)) = f(g(a=x)) = f x g(a=x)) ; from lemma 2.3 (iii), so that g(c=x) = (a=x)g(a=x) = g(x=a) by lemma 2.2 (iii). Thus c=x = x=a giving ¡ ¢ x = pac. ¤ Theorem 2.1. For all values of 0 < a < x < c ln c ln x ln x ln a ln c ln a c x ¡ x a ¡ c a ¡ ¡ ¡ < ¡ (5) ln c ln x ln x ln a ln c ln a µ ¡ ¶ µ ¡ ¶ µ ¡ ¶ Proof: The results hold i® c x x a c a (ln c ln x) ¡ +(ln x ln a) ¡ < (ln c ln a) ¡ ¡ ln c ln x ¡ ln x ln a ¡ ln c ln a µ ¡ ¶ µ ¡ ¶ µ ¡ ¶ xi xi 1 Set x = a; x = x; x = c and let w = ln x ln x ; ® = ¡ ¡ 0 1 2 i i i 1 i ln xi ln xi 1 ¡ ¡ ¡ and let © (x) = ln x, the result follows from the Jensen's inequalit¡ y with rather than¡ <. But · y ® y 0 = [f(g(a=x)) f(g(c=x))] x ¡ so that y 0 is negative on [a; pac] and positive on [pac; c]: Strict inequal- ity in Theorem 2.4 now follows from the previous results since the derivative is strictly negative on [a; pac] and positive on the interval [pac; c]: Thus equality holds only at a and c. ¤ 4 3 Convexity Theorem 3.1. The function ln c ln x ln x ln a ln c¡ln a ln c¡ln a c x ¡ x a ¡ y(x) = ¡ ¡ (6) ln c ln x ln x ln a µ ¡ ¶ µ ¡ ¶ is log-convex, and hence convex, on the interval pac: Proof: Let w = ® ln y, then w 0 = ®y 0=y and hence from (5) xw 0 = f(g(a=x)) ¡ f(g(c=x)) is an increasing function so that w 0 + xw 00 0: Thus xw 00 ¸ ¸ w 0: Now on [a; pac], w 0 0, and so w 00 0 so that w is convex (and ¡ · ¸ hence log convex) on [a; pac]: ¤ Lemma 3.1. The curve ln c ln x ln x ln a ln c¡ln a ln c¡ln a c x ¡ x a ¡ y(x) = ¡ ¡ (6) ln c ln x ln x ln a µ ¡ ¶ µ ¡ ¶ is invariant under the transformation x ac=x: à Proof: ln c ln ac ln ac ln a ¡ ( x ) ( x )¡ ac ln c ln a ac ln c ln a c ¡ a ¡ z(x) = ¡ x x ¡ ln c ln ac ln ac ln a à ¡ x ! à x ¡ ! ln c ln(ac)+ln x ln(ac) ln x ln a c¡(x ¢a) ¡ln c¡ ln a¢ a(c x) ln¡c ln ¡a ¡ ¡ ¡ ¡ = x x ln c ln a ln c + ln x ln(ac) ln x ln a à ¡ ¡ ! à ¡ ¡ ! ln x ln a ln c ln x c(x a) ln c¡ln a a(c x) ln c¡ln a ¡ ¡ ¡ ¡ = x x ln x ln a ln c ln x à ¡ ! à ¡ ! ln x ln a ln c ln x c ln c¡ln a a ln c¡ln a = ¡ ¡ y(x): x x ³ ´ ³ ´ (7) Now ln x ln a ln c ln x ¡ + ¡ = 1 ln c ln a ln c ln a ¡ ¡ Thus from (7) ln x ln a ln c ln x ln x ln a ln x ln a c ln c¡ln a a ln c¡ln a c ln c¡ln a a 1 ln c¡ln a ¡ ¡ = ¡ ¡ ¡ x x x x ³ ´ ³ ´ ³ ´ln x ln a ³ ´ c ln c¡ln a x ¡ a = ln x ln a a ln c¡ln a x ¡ x ¢ ¡ a c ln(x=a)= ln(c=a) = ¡ ¢ x a ³a x´ ³ ´ = = 1 since bx = ex ln b: x a 5 Thus z(x) = y(x) and the lemma is proved.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us