Math 412: Number Theory Lecture 11 Möbius Inversion Formula

Math 412: Number Theory Lecture 11 Möbius Inversion Formula

Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Gexin Yu [email protected] College of William and Mary Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Multiplicative functions Def: φ(n) is the number of elements in a reduced system of residues modulo n. (i.e., the number of coprimes to n in 1, 2,...,n .) { } Def: the sum of divisors of n: σ(n)= d n d and the number of | divisors of n: ⌧(n)= d n 1 | P For f φ,σ,⌧ , f (mnP)=f (m)f (n)if(m, n) = 1, namely, they are 2{ } multiplicative functions. Thm: if f is a multiplicative function, then F (n)= d n f (d)isalso multiplicative. | P And d n φ(d)=n. | P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Let F (n)= d n f (d). Then what is f in terms of F ? | P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Thm: µ(n)ismultiplicative. Thm: d n µ(d)=1if and only if n = 1, otherwise, it is 0. | P M¨obiusInversion Def: the M¨obius function, µ(n), is defined by 1, n =1 µ(n)= ( 1)r , n = p p ...p 8 − 1 2 r <>0, otherwise :> Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Thm: d n µ(d)=1if and only if n = 1, otherwise, it is 0. | P M¨obiusInversion Def: the M¨obius function, µ(n), is defined by 1, n =1 µ(n)= ( 1)r , n = p p ...p 8 − 1 2 r <>0, otherwise Thm: µ(n)ismultiplicative.:> Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula M¨obiusInversion Def: the M¨obius function, µ(n), is defined by 1, n =1 µ(n)= ( 1)r , n = p p ...p 8 − 1 2 r <>0, otherwise Thm: µ(n)ismultiplicative.:> Thm: d n µ(d)=1if and only if n = 1, otherwise, it is 0. | P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula M¨obiusInversion Mobius Inversion Formula: If F (n)= f (d), then f (n)= µ(d)F (n/d). d n d n X| X| Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula From σ(n)= d n d we have n = d n µ(n/d)σ(d). | | P P From ⌧(n)= d n 1wehave1= d n µ(n/d)⌧(d). | | P P Thm: if F (n)= d n f (d)andF is multiplicative, then f is also multiplicative. | P Applications of M¨obius Inversion n From n = d n φ(n), we have φ(n)= d n µ(d) d . | | P P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula From ⌧(n)= d n 1wehave1= d n µ(n/d)⌧(d). | | P P Thm: if F (n)= d n f (d)andF is multiplicative, then f is also multiplicative. | P Applications of M¨obius Inversion n From n = d n φ(n), we have φ(n)= d n µ(d) d . | | P P From σ(n)= d n d we have n = d n µ(n/d)σ(d). | | P P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Thm: if F (n)= d n f (d)andF is multiplicative, then f is also multiplicative. | P Applications of M¨obius Inversion n From n = d n φ(n), we have φ(n)= d n µ(d) d . | | P P From σ(n)= d n d we have n = d n µ(n/d)σ(d). | | P P From ⌧(n)= d n 1wehave1= d n µ(n/d)⌧(d). | | P P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Applications of M¨obius Inversion n From n = d n φ(n), we have φ(n)= d n µ(d) d . | | P P From σ(n)= d n d we have n = d n µ(n/d)σ(d). | | P P From ⌧(n)= d n 1wehave1= d n µ(n/d)⌧(d). | | P P Thm: if F (n)= d n f (d)andF is multiplicative, then f is also multiplicative. | P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula In general, one can have Dirichlet product (or Dirichlet Convolution): h f = h(d )f (d ). ⇤ 1 2 n=Xd1d2 Then we have g = µ f if and only if f =1 g. ⇤ ⇤ Thm: if f (n)= d n µ(d)F (n/d), then F (n)= d n f (d). | | P P Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula Thm: if f (n)= d n µ(d)F (n/d), then F (n)= d n f (d). | | P P In general, one can have Dirichlet product (or Dirichlet Convolution): h f = h(d )f (d ). ⇤ 1 2 n=Xd1d2 Then we have g = µ f if and only if f =1 g. ⇤ ⇤ Gexin Yu [email protected] Math 412: Number Theory Lecture 11 M¨obius Inversion Formula.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us