File Organizations and Indexing Administrivia Review – the Big

File Organizations and Indexing Administrivia Review – the Big

File Organizations and Indexing Administrivia Lecture 5 • Homework 1 Assignment now Available – Due in 2 parts: Sunday 9/14, Thursday 9/18 R&G Chapter 8 – Have to make changes to Postgres "If you don't find it in the index, look very – Don’t procrastinate carefully through the entire catalogue." -- Sears, Roebuck, and Co., Consumer's Guide, 1897 Review – The Big Picture Review – Relational Algebra • Basic operators for manipulating relations • Databases are cool – Selection ( s ) Selects a subset of rows – Theory: data modelling, relational algebra – Projection ( p ) Retains only wanted columns – Practical: storing data with disk, RAM – Cross-product ( ´ ) Combine two relations – Set-difference ( — ) Tuples in r1, but not in r2 • Today: – Union ( È ) Tuples in r1 and/or in r2 – Rename ( ? ) Change column name – Practical: File Organization, Indexing • Other Useful Operators • Next Time: – Intersection (Ç ) Tuples in both relations – Theory: Relational Calculus – Join ( ) Match common columns – Division ( / ) Tuples in A that match all in B Relation Algebra 2: Division Review: Examples of Division A/B sno pno pno • Division A / B, pno pno s1 p1 p2 p2 – columns in A must be a superset of columns in B p1 s1 p2 p4 p2 – let C be the columns in both A and B B1 both s1 p3 B2 p4 – let C be the columns that are only in A A-Only s1 p4 B3 – result has columns C A-Only s2 p1 sno – result has only rows where values in C A-Only have a s2 p2 s1 match with every value in B s3 p2 s2 sno – can be defined using other operators s4 p2 s3 s1 sno s4 p4 s4 s4 s1 A A/B1 A/B2 A/B3 1 sid bid day Review: Reserves 22 101 10/10/96 Find the names of Find the names of sailors who’ve reserved all boats Sailors who have 58 103 11/12/96 reserved all boats sid sname rating age • Uses division; schemas of the input relations to / must be carefully chosen: Sailors 22 dustin 7 45.0 31 lubber 8 55.5 r (Tempsids, (p Re serves) / (p Boats)) 58 rusty 10 35.0 sid,bid bid p (Tempsids>< Sailors) Boats bid bname color sname 101 Interlake Blue 102 Interlake Red v To find sailors who’ve reserved all ‘Interlake’ boats: 103 Clipper Green ..... / p (s Boats) 104 Marine Red bid bname=' Interlake' Review – Buffer Management and Files Today: File Organization • Storage of Data • How to keep pages of records on disk – Fields, either fixed or variable length... – Stored in Records... • but must support operations: – Stored in Pages... – scan all records – Stored in Files – search for a record id “RID” – search for record(s) with certain values • If data won’t fit in RAM, store on Disk – insert new records – Need Buffer Pool to hold pages in RAM – delete old records – Different strategies decide what to keep in pool Alternative File Organizations Indexes Many alternatives exist, tradeoffs for each: • Sometimes need to retrieve records by the values in one – Heap files: or more fields, e.g., • Suitable when typical access is file scan of all records. – Find all students in the “CS” department – Find all students with agpa > 3 • An index on a file is a: – Sorted Files: – Disk-based data structure • Best for retrieval in search key order – Speeds up selections on the search key fields for the index. • Also good for search based on search key – Any subset of the fields of a relation can be index searchkey – Search key is not the same as key • (e.g. doesn’t have to be unique ID). – Indexes: Organize records via trees or hashing. • An index • Like sorted files, speed up searches for search key fields – Contains a collection of data entries • Updates are much faster than in sorted files. – Supports efficient retrieval of all records with a given search key value k. 2 First Question to Ask About Indexes Index Classification • What selections does it support • What kinds of selections do they support? – Selections of form field <op> constant – Equality selections (op is =) • Representation of data entries in index – Range selections (op is one of <, >, <=, >=, BETWEEN) – what info is the index storing? 3 alternatives: – More exotic selections: • Data record with key value k • 2-dimensional ranges (“east of Berkeley and west of Truckee and North of Fresno and South of Eureka”) • <k, rid of data record with search key value k> – Or n- dimensional • <k, list of rids of data records with search key k> • 2-dimensional distances (“within 2 miles of Soda Hall”) – Or n- dimensional • Ranking queries (“10 restaurants closest to VLSB”) • Clustered vs. Unclustered Indexes • Regular expression matches, genome string matches, etc. • One common n-dimensional index: R-tree • Single Key vs. Composite Indexes – Supported in Oracle and Informix • Tree-based, hash-based, other – See http://gist.cs.berkeley.edu for research on this topic Alternatives for Data Entry k* in Index Alternatives for Data Entries (Contd.) • Three alternatives: · Actual data record (with key value k) • Alternative 1: · <k, rid of matching data record> Actual data record (with key value k) · <k, list of rids of matching data records> – Index structure is file organization for data records (like Heap files or sorted files). • Choice is orthogonal to the indexing technique. – At most one index on a table can use Alternative 1. – techniques: B+ trees, hash-tables, R trees, … – Saves pointer lookups – Typically, index contains auxiliary information that – Can be expensive to maintain with insertions and directs searches to the desired data entries deletions. • Can have multiple (different) indexes per file. – E.g. file sorted by age, with a hash index on salary and a B+tree index on name. Alternatives for Data Entries (Contd.) Index Classification Alternative 2 <k, rid of matching data record> • Clustered vs. unclustered: and Alternative 3 – If order of data records is the same as, or `close to’, <k, list of rids of matching data records> order of index data entries, then called clustered index. – Easier to maintain than Alt 1. • A file can be clustered on at most one search key. – Atmost one index can use Alternative 1; any others must use Alternatives 2 or 3. • Cost to retrieve data records with index varies – Alternative 3 more compact than Alternative 2, but greatly based on whether index clustered or not! leads to variable sized data entries even if search keys are of fixed length. • Alternative 1 implies clustered, but not vice-versa. – Even worse, for large rid lists the data entry might have to span multiple pages! 3 Clustered vs. Unclustered Index Unclustered vs. Clustered Indexes • Suppose that Alternative (2) is used for data entries, and that the data records are stored in a Heap file. – To build clustered index, first sort the Heap file (with • What are the tradeoffs???? some free space on each block for future inserts). • Clustered Pros – Overflow blocks may be needed for inserts. (Thus, order of – Efficient for range searches data recs is `close to’, but not identical to, the sort order.) – May be able to do some types of compression – Possible locality benefits (related data?) Index entries UNCLUSTERED CLUSTERED direct search for data entries • Clustered Cons Data entries Data entries – Expensive to maintain (on the fly or sloppy with (Index File) reorganization) (Data file) Data Records Data Records B+ Tree Indexes Hash-Based Indexes • Good for equality selections. Non-leaf • Index is a collection of buckets. Bucket = primary Pages page plus zero or more overflow pages. • Hashing function h: – h(r) = bucket in which record r belongs. Leaf Pages – h looks at the search key fields of r. v Leaf pages containdata entries, and are chained (prev & next) v Non-leaf pages contain index entries and direct searches: • If Alternative (1) is used, the buckets contain the data records; otherwise, they contain <key, rid> index entry or <key, rid-list> pairs. P K P K P 0 1 1 2 P 2 K m m Example B+ Tree Comparing File Organizations Root 17 • Heap files (random order; insert at eof) Entries <= 17 Entries > 17 • Sorted files, sorted on <age, sal> • Clustered B+ tree file, Alternative (1), search 5 13 27 30 key <age, sal> • Heap file with unclustered B + tree index on 39* 2* 3* 5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* search key <age, sal> • Find 28*? 29*? All > 15* and < 30* • Heap file with unclustered hash index on • Insert/delete: Find data entry in leaf, then search key <age, sal> change it. Need to adjust parent sometimes. – And change sometimes bubbles up the tree 4 Operations to Compare Cost Model for Analysis I/O cost 150,000 times more than hash function • Scan: Fetch all records from disk – We ignore CPU costs, for simplicity • Fetch all records in sorted order B: The number of data pages • Equality search R: Number of records per page • Range selection F: Fanout of B-tree • Insert a record • Delete a record Average-case analysis; based on several simplistic assumptions. * Good enough to show the overall trends! Heap File I/O Cost of Scan all Assumptions in Our Analysis Operations records • Heap Files: Get all in sort order – Equality selection on key; exactly one match. B: Number of data pages (packed) • Sorted Files: R: Number of records per page Equality Search – Files compacted after deletions. S: Time required for equality search • Indexes: Range – Alt (2), (3): data entry size = 10% size of record Search – Hash: No overflow buckets. Insert • 80% page occupancy => File size = 1.25 data size – Tree: 67% occupancy (this is typical). Delete • Implies file size = 1.5 data size Sorted File Clustered Tree I/O Cost of Scan all I/O Cost of Scan all Operations records Operations records Get all in Get all in sort order sort

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us