LA-Courant Algebroids and Their Applications

LA-Courant Algebroids and Their Applications

LA-Courant algebroids and their applications. by David Scott Li-Bland A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy arXiv:1204.2796v1 [math.DG] 12 Apr 2012 Graduate Department of Mathematics University of Toronto Copyright c 2012 by David Scott Li-Bland Abstract LA-Courant algebroids and their applications. David Scott Li-Bland Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2012 In this thesis we develop the notion of LA-Courant algebroids, the infinitesimal analogue of multiplicative Courant algebroids. Specific applications include the integration of q- Poisson (d; g)-structures, and the reduction of Courant algebroids. We also introduce the notion of pseudo-Dirac structures, (possibly non-Lagrangian) subbundles W ⊆ E of a Courant algebroid such that the Courant bracket endows W naturally with the structure of a Lie algebroid. Specific examples of pseudo-Dirac structures arise in the theory of q-Poisson (d; g)-structures. ii Dedication To Esther, the love of my life, and to Wesley, the apple of our eyes. Thanks be to God for his blessings. Acknowledgements I would like to thank my father, John Bland, for inspiring a love of mathematics in me. I would like to thank my supervisor, Eckhard Meinrenken, for his guidance, patience, advice, encouragement and help over the years. I would like to thank Pavol Severaˇ for many delightful conversations, explanations, perspectives, and the math he taught me. I would like to thank Alfonso Gracia-Saz and Rajan Mehta for teaching me supergeometry and the theory of double and LA-vector bundles. I would like to thank Alejandro Cabrera for many interesting discussions and teaching me about tangent prolongations. I would also like to thank Anton Alekseev, Henrique Bursztyn, Arlo Caine, Marco Gualtieri, Travis Li, Jiang Hua Lu, Brent Pym, and Ping Xu for many interesting conversations. Finally, I would like to thank my beautiful wife, Esther, for all her love, her sup- port, her encouragement, and her strength of character. She is the most wise, inspiring, fascinating, and wonderful person I have ever met. iii Contents 1 Introduction 1 1.0.1 A brief history . .1 1.0.2 Multiplicative Courant algebroids, and their infinitesimal versions LA-Courant algebroids . .4 1.0.3 pseudo-Dirac structures . .5 1.0.4 Applications . .7 2 Preliminaries 15 2.1 Linear relations . 15 2.2 Lie algebroids and Courant algebroids . 16 2.2.1 Poisson manifolds . 16 2.2.2 Lie algebroids . 19 2.2.3 Courant algebroids . 22 2.3 Multiplicative Courant algebroids, and multiplicative Manin pairs . 29 2.4 Double structures . 31 2.5 Double vector bundles . 31 2.5.1 The core . 34 2.5.2 Duals of double vector bundles . 37 2.5.3 Total kernels and quotients of double vector bundles . 40 2.6 Triple vector bundles . 41 2.6.1 Duality . 42 2.7 LA-vector bundles and double linear Poisson vector bundles . 44 2.7.1 LA-vector bundles . 44 2.7.2 Double linear Poisson vector bundles . 45 3 VB-Courant algebroids 47 3.1 VB-Courant algebroids . 47 3.2 Lie 2-algebroids . 57 3.3 Further examples . 59 3.4 Tangent prolongation of a Courant algebroid . 61 4 pseudo-Dirac structures 66 4.1 pseudo-Dirac structures . 66 4.1.1 Examples . 73 4.1.2 Forward and backward images of pseudo-Dirac structures . 74 iv 5 LA-Courant algebroids 80 5.1 LA-Courant algebroids . 80 5.1.1 Examples . 82 5.2 Poisson Lie 2-algebroids and multiplicative Courant algebroids . 89 6 Outlook 94 6.1 Reduction of Courant algebroids . 94 6.1.1 Reduction via LA-Dirac structures in T E ............. 94 6.1.2 Reduction via VB-Dirac structures in T E .............. 99 6.2 Integration of q-Poisson (d; g)-structures . 102 6.2.1 A canonical morphism . 102 6.2.2 Transfer of data . 106 flip 6.2.3 The morphism of Manin pairs (TL; T L ) 99K (d × T d; d × T g). 109 6.2.4 Integration corollaries . 111 A Technical proof for Courant algebroids 113 B Technical proof for double vector bundles 116 C Technical proofs for LA-Courant algebroids 119 Bibliography 123 v List of Figures 1.1 For functions c; c0 2 Z(S) vanishing on the submanifold S ⊆ M, the Hamiltonian vector fields XcjS and Xc0 jS may not be tangent to S. D ⊆ TM is the distribution spanned by the restriction of all such vector fields to S.......................................2 1.2 The submanifold S ⊆ M describes constraints on the physical system, while vector fields tangent to the foliation describe symmetries. .8 1.3 The subbundle D ⊆ TMjS of the ambient tangent space controls how functions on S are extended to M ......................9 −1 2.1 The vector ξ 2 TxB is tangent to the fibre qB=M (x), and therefore defines a core element of TB at x 2 M. If σ 2 Γ(B) is such that ξ = σ(x), then for any X 2 TM, σC (X) = X +T B=B ξ, (here the addition takes place in the vector space TxB). ............................ 37 2.2 For any section σ 2 Γ(B), the tangent lift σT 2 Γ(T B; T M) of σ takes X 2 TM to dσ(X) 2 TB........................... 38 vi Chapter 1 Introduction 1.0.1 A brief history Courant algebroids and Dirac structures were first introduced by Courant [28,30] as a geo- metric framework for Dirac's theory of Hamiltonian systems with constraints [34].Courant's original setup was generalized in [69], as a means of constructing doubles for Lie bial- gebroids. Courant algebroids have now found many uses, from the theory of moment maps [2,14,16,17,129] to generalized complex geometry [46,50]. The Dirac bracket We shall go into some more detail. In Hamiltonian mechanics, the phase space - the space of all possible states of a physical system - is described by a smooth manifold M. Smooth functions f 2 C1(M) on the phase space describe various quantities one might wish to measure, such as energy, position, or momentum. Additionally, M carries a Poisson structure: a bivector field π 2 X2(M), such that the bracket ff; gg := π(df; dg); f; g 2 C1(M) endows the vector space C1(M) with the structure of a Lie algebra. Noether's first theorem - that conserved quantities correspond to symmetries - arises as follows: the Poisson structure associates to any function f 2 C1(M) (a conserved quantity) the vector field Xf := g ! ff; gg 2 X(M) (describing the corresponding symmetry of phase space). Introducing constraints on this system corresponds to describing a submanifold S ⊆ M. Ideally, one would like the Poisson bracket {·; ·} on C1(M) to descend to a bracket 1 {·; ·}S on C (S) so that the restriction of functions to S is a morphism of Lie algebras, i.e. ∗ ∗ ∗ 1 fi f; i ggS = i ff; gg; f; g 2 C (M); where i : S ! M is the inclusion. Unfortunately, this is impossible in general, since the vanishing ideal Z(S) ⊆ C1(M) of S ⊆ M might not be a Lie algebra ideal. Equivalently, for an arbitrary function c 2 Z(S), the vector field Xc := fc; ·} 2 X(M) 1 Chapter 1. Introduction 2 (Xc)x x (Xc0 )x Figure 1.1 { For functions c; c0 2 Z(S) vanishing on the submanifold S ⊆ M, the Hamiltonian vector fields XcjS and Xc0 jS may not be tangent to S. D ⊆ TM is the distribution spanned by the restriction of all such vector fields to S. might not vanish when restricted to S (nor even be tangent to S). Let D ⊆ TMjS be the distribution spanned by the vector fields XcjS for c 2 Z(S) (see Fig. 1.1). A function f 2 C1(S) is called admissible if v · f = 0 for any vector v 2 D \ TS. Similarly, a function f~ 2 C1(M) is called an admissible extension of f if i∗f~ = f and v · f~ = 0 for any vector v 2 D. Dirac showed that there exists a Lie bracket {·; ·}DB (called the 1 Dirac bracket) on the subspace Cadm(S) of admissible functions such that ∗ ~ ∗ ∗ ~ ff; ggDB = fi f; i g~gDB = i ff; g~g (1.0.1) ~ 1 1 for any admissible extensions f; g~ 2 C (M) of f; g 2 Cadm(S). Remark 1.0.1. One may interpret the distribution D \ TS as describing some gauge transformations of the physical system: When D \ TS is of constant rank, then it is involutive, and thus, by Frobenius's theorem, defines a foliation. The admissible functions can then be interpreted as the algebra of functions on the leaf space. Courant algebroids In 1986 Courant [28, 30] described a geometric framework for Dirac's theory of con- strained Hamiltonian mechanics, which we shall briefly summarize. The Pontryagin Chapter 1. Introduction 3 bundle TM := TM ⊕ T ∗M carries a split signature metric defined by the natural paring h(v; µ); (w; ν)i := µ(w) + ν(v); (v; µ); (w; ν) 2 TM: Courant's insight was to consider Lagrangian subbundles of the Pontryagin bundle (i.e. L 2 TM such that L? = L), replacing the Poisson bivector field π 2 X2(M) with its graph gr(π]) := f(X; α) 2 TM ⊕ T ∗M j X = π(α; ·)g: He described a bracket, which is usually referred to as the Courant bracket in the litera- ture,1 [[(X; α); (Y; β)]] = [X; Y ]; LX β − ιY dα (1.0.2) on the space of sections Γ(TM), and showed that this bracket restricts to a Lie bracket on Γ gr(π]).A Dirac structure is defined to be an arbitrary Lagrangian subbundle L ⊆ TM which is involutive with respect the Courant bracket.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    137 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us