Asymptotics Asymptotics: Consistency and Delta Method MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Outline 1 Asymptotics Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions 2 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency Statistical Estimation Problem X1;:::; Xn iid Pθ; θ 2 Θ: q(θ): target of estimation. q^(X1;:::; Xn): estimator of q(θ): Definition: q^n is a consistent estimator of q(θ), i.e., Pθ q^n(X1;:::; Xn) −! q(θ) if for every E > 0; limn!1 Pθ(jqn(X1;:::; Xn) − q(θ)j > E) = 0: Example: Consider Pθ such that: E [X1 j θ] = θ q(θ) = θ Pn i=1 Xi q^n = = X n When is q^n consistent for θ? 3 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency: Example Example: Consistency of sample mean q^n(X1;:::; Xn) = X = X n: 2 If Var(X1 j θ) = σ (θ) < 1, apply Chebychev's Inequality. For any E > 0: 2 2 Var(X n j θ) σ (θ)/E n!1 Pθ(jX nj ≥ E) ≤ = −−−! 0 E2 n If Var(X1 j θ) = 1; X n is consistent if E [jX1j j θ] < 1: Proof: Levy Continuity Theorem. 4 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency: A Stronger Definition Definition: q^n is a uniformly consistent estimator of q(θ), if for every E > 0; limn!1 sup[Pθ(jqn(X1;:::; Xn) − q(θ)j > E)] = 0: θ2Θ Example: Consider the sample mean q^n = X n for which E [X n j θ] = θ 2 Var[X n j θ] = σ (θ): Proof of consistency of q^n = X n extends to uniform consistency if 2 supθ2Θ σ (θ) ≤ M < 1 (∗). Examples Satisfying (∗) Xi i.i.d. Bernoulli(θ): 2 2 Xi i.i.d. Normal(µ, σ ); where θ = (µ, σ ) Θ = fθg = (−∞; +1) × [0; M]; for finite M < 1: 5 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency: The Strongest Definition Definition: q^n is a strongly consistent estimator of q(θ), if i t Pθ lim jqn(X1;:::; Xn) − q(θ)j ≤ E)] = 1; for every E > 0: n!1 a:s: q^n −−! q(θ): (a.s. ≡ "almost surely") Compare to: Definition: q^n is a (weakly) consistent estimator of q(θ), if for every E > 0; limn!1 [Pθ(jqn(X1;:::; Xn) − q(θ)j > E)] = 0: 6 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of Plug-In Estimators Plug-In Estimators: Discrete Case Discrete outcome space of size K : X = fx1;:::; xK g X1;:::; Xn iid Pθ; θ 2 Θ; where θ = (p1;:::; pK ) P(X1 = xk j θ) = pk ; k = 1;:::; K PK pk ≥ 0 for k = 1;:::; K and 1 pk = 1: Θ = SK (K -dimensional simplex). Define the empirical distribution: ^ θn = (^p1;:::; p^K ) where Pn 1(X = x ) N p^ = i=1 i k ≡ k k n n ^ θn 2 SK . 7 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of Plug-In Estimators Proposition/Theorem (5.2.1) Suppose Xn = (X1;:::; Xn) is a random sample of size n from a discrete distribution θ 2 S: Then: θ^n is uniformly consistent for θ 2 S: d For any continuous function q : S! R , q^ = q(θ^n) is uniformly consistent for q(θ): Proof: For any E > 0; Pθ(jθ^n − θj ≥ E) −! 0: This follows upon noting that: ^ 2 2 K ^ 2 2 fxn : jθn(xn) − θj < E g ⊃ \k=1fxn : j(θn(xn) − θ)k j < E =K g So ^ 2 2 PK ^ 2 2 P(fxn : jθn(xn) − θj ≥ E g ≤ k=1 P(fxn : j(θn(xn) − θ)k j ≥ E =K g PK 1 2 K 2 ≤ k=1 4n =(E =K ) = 4n:2 8 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of Plug-In Estimators Proof (continued): q(·): continuous on compact S =) q(·) uniformly continuous on S: For every E > 0; there exists δ(E) > 0 such that: jθ1 − θ0j < δ(E) =) jq(θ1) − q(θ0)j < E, uniformly for all θ0; θ1 2 Θ: It follows that c c fx : jq(θ^n(x)) − q(θ)j < Eg ⊆ fx : jθ^n − θj < δ(E)g =) Pθ[jq^n − q(θ)j ≥ E] ≤ Pθ[jθ^n − θj ≥ δ(E)] Note: uniform consistency can be shown; see B&D. 9 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of Plug-In Estimators Proposition 5.2.1 Suppose: d g = (g1;:::; gd ): X ! Y ⊂ R : E [jgj (X1)j j θ] < 1; for j = 1;:::; d; for all θ 2 Θ: mj (θ) ≡ E [gj (X1) j θ]; for j = 1;:::; d: Define: q(θ) = h(m(θ)), where m(θ) = (m1(θ);:::; md (θ)) p h : Y! R ; is continuous. Then: n ! 1 X q^n = h(g¯) = h g(Xi ) n i=1 is a consistent estimator of q(θ): 10 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of Plug-In Estimators Proposition 5.2.1 Applied to Non-Parametric Models P = fP : EP (jg(X1)j) < 1g and ν(P) = h(EP g(X1)) P ν(P^n) −! ν(P) where P^n is empirical distribution. 11 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of MLEs in Exponential Family Theorem 5.2.2 Suppose: P is a canonical exponential family of rank d generated by T T = (T1(X );:::; Td (X )) : p(x j η) = h(x)expfT(x)η − A(η)g E = fηg is open. X1;:::; Xn are i.i.d Pη 2 P Then: n!1 Pη[ the MLE η^ exists] −−−! 1: η^ is consistent. 12 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of MLEs in Exponential Family Proof: Pn o η^(X ;:::; X ) exists iff T = T(X )=n 2 C : 1 n n 1 i Tn o If η is true, then t = E [T(X ) j η ] 2 C 0 0 1 0 Tn • and A(η0) = t0: By definition of the interior of the convex support, there exists o δ > 0: S = ft : jt − E [T(X )j < δg ⊂ C . δ η0 1 Tn By the WLLN: n 1 X Pη0 Tn = T(Xi ) −−−−! Eη0 [T(X1)] n i=1 o n!1 =) P T 2 C −−−−−! 1: η0 n Tn • o η^ exists if it solves A(η) = T , i.e., if T 2 C , n n Tn • 0 The map η ! A(η) is 1-to-1 on CT and continuous on E; so • −1 the inverse function A is continuous, and Prop. 5.2.1 applies. 13 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Consistency of Minimum-Contrast Estimates Minimum-Contrast Estimates d X1;:::; Xn iid Pθ; θ 2 Θ ⊂ R : ρ(X ; θ): X × Θ ! R; a contrast function D(θ0; θ) = E [ρ(X ; θ) j θ0]: the discrepancy function θ = θ0 uniquely minimizes D(θ0; θ): The Minimum-Contrast Estimate θ^ minimizes: n 1 X ρn(X; θ) = ρ(Xi ; θ): n i=1 Theorem 5.2.3 Suppose n P 1 X θ0 supf ρ(Xi ; θ) − D(θ0; θ)g −−−−! 0 θ2Θ n i=1 inf fD(θ0; θ)g > D(θ0; θ0); for all E > 0: jθ−θ0|≥: Then θ^ is consistent. 14 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Outline 1 Asymptotics Asymptotics: Consistency Delta Method: Approximating Moments Delta Method: Approximating Distributions 15 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Delta Method Theorem 5.3.1 (Applying Taylor Expansions) Suppose that: X1;:::; Xn iid with outcome space X = R. 2 E [X1] = µ, and Var[X1] = σ < 1: m E [jX1j ] < 1: h : R ! R, m-times differentiable on R; with m ≥ 2: dj h(x) h(j) = , j = 1; 2;:::; m: dxj (m) (m) jjh jj1 ≡ sup jh (x)j ≤ M < 1: x2X Then m−1 (j) X h (µ) j E (h(X )) = h(µ) + E[(X − µ) ] + Rm j! j=1 m E [jX1j ] −m=2 where jRmj ≤ M m! n 16 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Proof: Apply Taylor Expansion to h(X ): h(X ) = m−1 (j) X h (µ) j (m) ∗ m h(µ) + (X − µ) + h (X )(X − µ) ; j! j=1 ∗ where jX − µj ≤ jX − µj Take expectations and apply Lemma 5.3.1: If j E jX1j < 1; j ≥ 2; then there exist constants Cj > 0 and Dj > 0 such that j j −j=2 E jX − µj ≤ Cj E jX1j n j j −(j+1)=2 jE [(X − µ) ]j ≤ Dj E jX1j n for j odd 17 MIT 18.655 Asymptotics: Consistency and Delta Method Asymptotics: Consistency Asymptotics Delta Method: Approximating Moments Delta Method: Approximating Distributions Applying Taylor Expansions Corollary 5.3.1 (a).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages33 Page
-
File Size-