Quantum Mechanics II Spring 2005

Quantum Mechanics II Spring 2005

Chem 794 Quantum Mechanics II Spring 2005 Chemistry 794 Quantum Mechanics II Spring 2005 Course outline 1. Density matrix • Pure vs mixed states. Ensemble interpretation. • Reduced density matrices. Entanglement. • Equations of motion. Analogy with classical mechanics. • Relaxation and decoherence. 2. Time-dependent phenomena • Evolution operator. Propagator and Green’s functions. • Three pictures: Schr¨odinger, Heisenberg, interaction. • 2-level system. Rotating wave approximation. Bloch equations. • Time-dependent perturbation theory. Harmonic perturbations. Resonant phenom- ena. Transitions to continuum; Golden rule. • Sudden approximation. • Adiabatic approximation. • Perturbation theory for density operator. Linear response. 3. Path integral formulation of quantum mechanics 4. Molecule-field interactions • Maxwell’s equations, scalar and vector potentials, gauge transformations, free field, and all that. • Hamiltonian for charged particle in field. • Perturbation in dipole approximation. • A and B coefficients. Selection rules. Sum rules. • Electric quadrupole and magnetic dipole transitions. • High-order perturbation theory and multiphoton processes. • Nonlinear spectroscopy. • Electric properties of molecules. Polarizability. • Magnetic properties of molecules. Magnetic susceptibility. Diamagnetism & para- magnetism. 5. Scattering Theory • Particle flux and scattering cross sections. G.S. Ezra 1 Cornell University Chem 794 Quantum Mechanics II Spring 2005 • Green’s functions and scattering problem. • Born approximation. • Partial wave analysis of wavefunction for central scattering potential. • Phase shifts and differential cross section. 6. Group theory in quantum mechanics • Groups; classes; cosets; representations; irreps; Schur’s lemma. • Great Orthogonality theorem. • Characters; character tables. • Representation theory and QM. Symmetry and degeneracy. • Projection operators. • Matrix elements of operators: selection rules. • Rotation group: spherical tensors; Wigner-Eckart theorem. If we have time: 7. Molecular vibrations • Born-Oppenheimer approximation. • Rotation-vibration separability. • Normal modes. • Vibration-rotation transitions. Selection rules. Polarization. G.S. Ezra 2 Cornell University.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us