Theoretical Study on the Structure, Reactivity and Stability of Silylenes and Silenes

Theoretical Study on the Structure, Reactivity and Stability of Silylenes and Silenes

M Ű EGYETEM 1782 THEORETICAL STUDY ON THE STRUCTURE, REACTIVITY AND STABILITY OF SILYLENES AND SILENES Ph. D. dissertation Julianna Oláh Supervisor: Dr. Tamás Veszprémi Budapest University of Technology and Economics Department of Inorganic Chemistry 2005 Köszönetnyilvánítás Szeretnék köszönetet mondani témavezetőmnek, Veszprémi Tamásnak, az együtt töltött hét év során nyújtott folyamatos támogatásáért, és a lehetőségért, hogy összesen másfél évet belgiumi kutatócsoportokkal tölthettem. Hálás vagyok Nyulászi Lászlónak, a Szervetlen Kémia tanszék tanszékvezetőjének. Köszönöm a tanszék minden dolgozójának és hallgatójának a jó hangulatot. Külön köszönet illeti Höltzl Tibit a számítógépek karbantartásáért és Olasz Andrást a számomra írt programért. Nagyon sokat tanultam Dínótól (Szieberth Dénes), Okitól (Hajgató Balázs) és Tomától (Kárpáti Tamás). Hálás vagyok Dínónak a tanszéki számítógépek karbantartásáért, Okinak a kimerítő válaszaiért. Tomának külön köszönöm, hogy elviselt az utóbbi két évben, mialatt közös szobában dolgoztunk, a sok csokit és üdítőt☺. Köszönetet szeretnék mondani segítőkészségéért és kedvességéért Lengyel L. Tibornénak. Hálás vagyok Paul Geerlings-nek és Christian Van Alsenoy-nak a lehetőségért, hogy csoportjukban dolgozhattam, valamint Frank Blockhuys-nek és Frank de Proftnak az együttműködésért. Bár sokat köszönhetek a tanáraimnak, munkatársaimnak, legnagyobb köszönet mégis a családomat illeti. Édesanyám mindig, mindenben segített. Hálás vagyok Gergőnek, édesapámnak és testvéreimnek, hogy mindig mellettem álltak, s támogattak. Table of Contents Table of Contents _____________________________________________________1 List of Figures, Schemes and Tables______________________________________2 Notations used in conceptual DFT _______________________________________4 1 Introduction________________________________________________________5 2 Low coordinated silicon compounds ____________________________________9 2.1 Silylenes and carbenoids________________________________________________ 9 2.2 Alcohol addition reactions of silenes _____________________________________ 18 3 Computational chemistry ____________________________________________27 3.1 Overview of quantum chemistry ________________________________________ 27 3.1.1 Wave function based methods ______________________________________________ 27 3.1.2 Density Functional Theory (DFT) ___________________________________________ 35 3.1.3 DFT-derived chemical concepts (Conceptual Density Functional Theory) __________ 37 3.2 Computational methods applied ________________________________________ 45 4 Silylenes __________________________________________________________47 4.1 Conceptual DFT studies on hypovalent Group 14 and 15 compounds (Publications 1, 2, 3 and 4)____________________________________________________________ 48 4.1.1 Spin-related DFT indices __________________________________________________ 49 4.1.2 Similarity of molecular groups _____________________________________________ 54 4.1.3 Lewis acid and Lewis base character of silylenes and germylenes _________________ 57 4.1.4 Relationship between spin-philicity / spin-donicity and electrophilicity / nucleophilicity indices ______________________________________________________________________ 68 4.2 Relationship between the stability and dimerization ability of silylenes (Publication 5) _____________________________________________________________________ 72 4.3 Design of a new silylene with a novel structure ____________________________ 77 5 Water addition reaction of Si=C double bonds attached to ring substituents____85 6 Summary ________________________________________________________103 List of Publications__________________________________________________105 References_________________________________________________________106 Appendix _________________________________________________________A-1 Publication 1______________________________________________________A-20 Publication 2 _____________________________________________________A-31 Publication 3 _____________________________________________________A-37 Publication 4 _____________________________________________________A-46 Publication 5 _____________________________________________________A-67 1 List of Figures, Schemes and Tables List of Figures Figure 1 Free energy diagram at the CBS-Q level of theory of water addition reaction to disilene taken from Ref. [74]......................................................................................................................................... 21 Figure 2 Derivatives of the energy.......................................................................................................... 38 Figure 3 Qualitative representation of the formulas of the spin potentials ............................................. 44 + Figure 4 Linear relationship between the maximal spin acceptance ∆N s,max (in spins) and the ∆Ev1 (in kcal/mol) for singlet silylenes (molecules 1-24, 26-27 from Table A1 in the Appendix) and between the − maximal spin release ∆N s,max (in spins) plotted against ∆Ev2 (in kcal/mol) for triplet phosphinidenes (molecules 114-123 from Table A1 in the Appendix)............................................................................ 50 Figure 5 Spin-philicities (in eV) plotted against the vertical singlet-triplet gap ∆Ev1 (in kcal/mol) for singlet silylenes (molecules 1,4-7, 10-24,26-27 from Table A1 in the Appendix)................................. 51 Figure 6 Spin-donicity index (in eV) vs. the vertical singlet-triplet gap, ∆Ev2 (in kcal/mol) phosphinidenes (molecules 114-123 from Table A1 in the Appendix) .................................................. 52 Figure 7 Comparison of the definitions, defining equations, properties of electrophilicity, spin-philicity and spin-donicity indices ........................................................................................................................ 53 Figure 8 Spin hardness of nitrenes (molecules 104-113 from Table A1 in the Appendix) plotted against the spin hardness of phosphinidenes(molecules 114-123 from Table A1 in the Appendix)................... 56 Figure 9 Spin hardness of phosphinidenes (molecules 114-119,121-123 from Table A1) plotted against the spin hardness of triplet carbenes (molecules 28-29,31-34,39-41 from Table A1) ............................ 56 Figure 10 Electrostatic potential calculated at Point A (VA) vs. the reaction energy ∆E (in kcal/mol) of silylenes with NH3 (molecules 1,3-7,9-22,26-27 from Table A1) SiF2 (18)and SiCl2 (19) are shown but excluded from the fit). ............................................................................................................................ 62 Figure 11 Global (ω) and local (ωSi) electrophilicity of silylenes vs. the reaction energy (∆E in kcal/mol) of the complexation reaction with NH3 (molecules 1,3-7,9-22,26-27 from Table A1)......... 64 Figure 12 Reaction energies (∆E) and Gibbs free energies (∆G) (in kcal/mol) of the complexation of silylenes with BH3 plotted against the minimum of the electrostatic potential (Vmin, in au) (molecules 5,3-7,15-17,20-24,26-27 from Table A1 and HSiH+NH3, HSiH+2NH3) The disubstituted species are shown, but not included in the fit............................................................................................................ 67 Figure 13 Electrophilicity, ω vs. the adiabatic singlet-triplet ∆Es-t gap for silylenes (molecules 1,3-7,9- 22,26-27) germylenes (molecules 54,56-60,62-70,73-75) and nitrenes (molecules 104,105,107-109,111- 113), phosphinidenes (molecules 114-119,21-123 from Table A1). ...................................................... 69 + − Figure 14 Spin-philicity ωS and spin-donicity ωS vs. the adiabatic singlet-triplet gap ∆Es-t for carbenes (+, molecules 28-37,39-53 from Table A1), silylenes (♦, molecules 1-24,26-27 from Table A1), germylenes (-, molecules 54-63, 65-79 from Table A1), nitrenes (▲, molecules 104-113 from Table A1), phosphinidenes (*,molecules 114-123 from Table A1) and molecules by Pérez in [Ref. 116] (, Table A8). ......................................................................................................................................... 70 + Figure 15 Spin-philicity ωS vs. electrophilicity ω for silylenes (molecules 1,3-7,9-22,26-27 from Table A1) and germylenes (molecules 54,56-60,62-70,73-75 from Table A1)................................................ 71 Figure 16 Isodesmic reaction energy (kcal/mol) (▲) and Gibbs free energy (kcal/mol) (♦) vs. the dimerization energy (kcal/mol) at the B3LYP/6-31G(D) level (Path 1) (molecules 1-27 in Table A1). 75 Figure 17 Singlet-triplet energy separation (kcal/mol) vs. the dimerization energy (kcal/mol) at the MP2/6-311+G(2D) level (Path 1) (molecules 1-27 in Table A1) ........................................................... 75 Figure 18 Optimized geometrical parameters of the investigated silylenes........................................... 79 Figure 19 Changes of the NICS(1) values for the different derivatives of the investigated silylenes: silylenes, complex with BH3, the silane, complex with NH3, and the triplet silylene............................. 82 Figure 20 Molecular orbitals of compounds 1 and 11 ............................................................................ 83 Figure 21 Structure of 12 in the singlet and triplet state and its dimer ................................................... 84 Figure 22 Comparison of the free energy diagram at the CBS-QB3 level for the reaction channels

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    192 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us