Deep Inelastic Scattering (DIS)

Deep Inelastic Scattering (DIS)

DeepDeep InelasticInelastic ScatteringScattering (DIS)(DIS) Dr. Un-ki Yang Particle Physics Group The University of Manchester [email protected] Un-ki Yang, Frontier of Particle Physics II - DIS 1 Un-ki Yang, Frontier of Particle Physics II - DIS 2 DeepDeep InelasticInelastic ScatteringScattering (DIS)(DIS) Lepton-nucleon scattering • Discovery of quarks • Quark-parton model • Structure Functions Quantum Chromodynamics (QCD) Applications to proton-proton(or antiproton) scattering (Tevatron and LHC) Lecture note:www.hep.man.ac.uk/~ukyang/dis/dis_lec1_09.pdf Un-ki Yang, Frontier of Particle Physics II - DIS 3 Elastic and Inelastic scattering Electron-proton scattering can be described Electron-Proton Scattering as an exchange of a virtual photon. At low Q2 (momentum carried by photon is low), its wavelength is long compared with the size of the proton. It will be the proton as a point. At medium Q2, its wavelength is comparable to the size of proton. Photon begins to resolve the finite size of P the proton. At high Q2, its wavelength is much shorter than the size of proton. Photon resolve the internal structure of the proton. Un-ki Yang, Frontier of Particle Physics II - DIS 4 Elastic electron - proton scattering Electron-Proton Scattering Assumption • Exchange of a single virtual photon • Relativistic electron (E>>me) • Spin-less electron θ • Proton is a point charge For spin-less electron (Rutherford scatt.) d! # 2 = α(=e2 / 4π ) 2 4 $ P d" 4E sin 2 ≈ 1 / 137 For spin ½ electron (Mott scatt.) 2 2 Q = !(k ! k ') d! # 2 cos2 $ = 2 2 2 2 4 $ " d" 4E sin 2 = 4E sin 2 Un-ki Yang, Frontier of Particle Physics II - DIS 5 Elastic electron-proton scattering with a particular charge distribution For an elastic scattering with a particular charge distribution, ρ(r), the scattering amplitude is modified by a form factor. ! ! F(q) = ! d 3reiq•r "(r) Form factor: Fourier transformation of the spatial charge distribution. - For zero momentum transfer, the form factor is one for unit charge. " d 3r!(r) =1 Un-ki Yang, Frontier of Particle Physics II - DIS 6 Inelastic electron-proton scattering Inelastic scattering: energy and angle e(k',E') of the scattered electron are 2 indep. e (k,E) θ variables γ (q) Form Factor: F(Q2 ,ν): Structure N (P,M) W Functions: W1, W2 for two polarization states of the virtual photon (long & transverse) 2 2 ! Q = 4EE' sin 2 W is the mass of the hadronic 2 2 W = (P + q) system = P2 + 2P "q + q2 2 2 2 2 d! # cos $ = M + 2M# ! Q = 2 W (%,q2 ) +W (%,q2 )tan 2 $ ' 2 4 $ [ 2 1 2 ] d"dE 4E sin 2 ν=E-E’ y= /E ν 7 (inelasticity) Un-ki Yang, Frontier of Particle Physics II - DIS Summary for Form Factor Point charge target: F(Q2)=constant photon always see all of it’s charge F Q2 Elastic electron-proton scattering: photon see less charge as Q2 is increased : F(Q2) F Q2 Inelastic electron-proton scattering: F(Q2 ,ν) − structure function Un-ki Yang, Frontier of Particle Physics II - DIS 8 SLAC-MIT e-P inelastic scattering SLAC-MIT group (Bloom et al.) in 1969 performed an experiment with high-energy electron beams (7-18 GeV). Scattering of electrons from a hydrogen target at 60 and 100. Only electrons are detected in the final state - inclusive approach Un-ki Yang, Frontier of Particle Physics II - DIS 9 Unexpected results from SLAC e-P scattering νW2 2 The ratio of σ /σMott : no Q dependence, and very weak W dependence. 2 Structure Function, νW2 has no Q dependence. What does it mean? Scattering against something like pointlike - a point is a point regardless of it’s λ Un-ki Yang, Frontier of Particle Physics II - DIS 10 Quark-Parton Model The nucleon is made of point-like free quarks with spin ½. Scattering off the nucleon is incoherent sum of elastic scattering off quarks: Inelastic electron-proton scattering => elastic electron-quark scattering. The probability, f(x) for a quark to carry momentum fraction x, does not depend on the process or nucleon energy but is intrinsic property for high energy nucleon. This quark-parton model was first proposed by Richard Feynman. This model explains of no Q2 dependence in Structure Functions (“Bjorken scaling”) Un-ki Yang, Frontier of Particle Physics II - DIS 11 Elastic electron-quark scattering Let’s consider the angular dependence for the total spin=0 and 1 cases Before Scattering After Scattering Total spin=0 e q e q +z direction d! Both spin and helicity (-) are conserved: no angular dependence "1 dy Before Scattering After Scattering Total spin=1 e q e q +z direction d! 2 1! cos" Spin is not conserved.: angular dependence " (1# y) , y = dy 2 2 d! 2 2 2 y For a single quark " eq [1+ (1# y) ] / 2 = eq [ + (1# y)] dy 2 Un-ki Yang, Frontier of Particle Physics II - DIS 12 Elastic electron-quark scattering Differential cross section for electron-quark scattering 2 2 2 d ! 4" ME 2 y = eq [ + (1# y)] dxdy Q4 2 Assume that the momentum fraction of the proton carried by quark is x, and the probability for a quark to carry momentum fraction x is f(x) d 2! 4" 2 ME % y2 ( = e2 xf (x) + 1$ y 4 (#i q i )' ( )* dxdy Q & 2 ) Compared with the inelastic electron-proton scattering. d! 4# 2 E 2 cos2 $ = 2 W (%,q2 ) + W (%,q2 )tan2 $ d"dE Q4 [ 2 1 2 ] d 2! 4" 2 ME $ y2 ' MW ->F = 2xF (x,Q2 ) + 1# y F (x,Q2 ) 1 1 4 & 1 ( ) 2 ) νW ->F dxdy Q % 2 ( 2 2 Un-ki Yang, Frontier of Particle Physics II - DIS 13 Parton Model and Scaling 2xF (x,Q2 ) = F (x,Q2 ) = e2 xf (x) 1 2 !i qi i Structure Functions, 2xF1(x,Q2) and F2(x,Q2) only depends on x, but no Q2 dependence (“Bjorken scaling”) according to quark-parton model, which agrees with results from the SLAC-MIT experiment. • Proton consists of many point-like quarks • Quark has a spin ½ • Callan – Gross relation holds : no contribution from longitudinally polarized virtual photon. 2xF1 = F 2 ∗ - 2xF1 ~ γ T ∗ ∗ - F2 ~ ( γ T + γ L) Thus, a point-like quarks can be only probed by the transversely polarized photon. Un-ki Yang, Frontier of Particle Physics II - DIS 14 Callan – Gross relation Phys.Rev.D20:1471,1979. R value is closed to zero No contribution from a longitudinally polarized virtual photon Thus, quark spin cannot be 0, but 1/2 What R value would you expect if quark spin is 0? homework F ! 2xF R = 2 1 2xF1 Un-ki Yang, Frontier of Particle Physics II - DIS 15 Quark distributions inside nucleon valence sea quark-antiquark pair from vacuum Un-ki Yang, Frontier of Particle Physics II - DIS 16 Quark distributions Un-ki Yang, Frontier of Particle Physics II - DIS 17 Nucleon structure functions F (x) = e2 xf (x) 2 !i qi i Proton and neutron structure functions, considering no strange quark • up(x): probability to find a u quark in a proton with momentum fraction x • un(x): probability to find a u quark in a neutron with momentum fraction x How did we know that u and d quarks have fractional electric charges, 2/3 and -1/3 respectively? Proposed by the Gell-Mann quark model, and confirmed by the SLAC-MIT experiment Un-ki Yang, Frontier of Particle Physics II - DIS 18 Quark Model (1964) Gell-Mann et al proposed a quark model to explain many hadrons observed with accelerators in the 1950’s and 1960’s • Hadrons are either baryons (3 quark bound states) or mesons (quark-antiquark pairs) • There are 3 types of quark (up, down and strange; u, d, s) and 3 types of antiquark with opposite electric charge • Quarks (anti-quarks) are spin 1/2 fermions (anti-fermions) • Quarks carry fractional electric charge (u:+2/3 e; d & s: -1/3 e) for example, proton (uud), neutron(ddu) • All hadrons are well specified according to this quark model, and even predicted missing members (like Ω- baryon) • But Gell-Mann was afraid of claiming a quark as a real physical object (no one has every seen a quark!) • Is this quark same as what Feynman’s quark-parton model mentioned? - yes, quark is found to have spin-1/2 and fractional charges given by this model. Un-ki Yang, Frontier of Particle Physics II - DIS 19 Nucleon structure functions • For isospin symmetry under strong interaction (p=uud, n=udd) • From now, we drop the suffix, use quark distributions inside proton • Take separate contributions of the valence and sea Un-ki Yang, Frontier of Particle Physics II - DIS 20 Quark charge? Bodek PhD. MIT 1972 As x0, sea quarks are dominated. en F2 10S eP ! ! 1 F2 10S As x1, valence quarks are dominated (mainly u quark) en F2 4dv + uv 1 eP ! ! F2 dv + 4uv 4 en F2 4dv + uv + 10sea eP = F2 dv + 4uv + 10sea Un-ki Yang, Frontier of Particle Physics II - DIS 21 Sum Rules from Quark-Paron Model GLS sum rule: there are 3 valence quarks 1 (u (x) + d (x))dx = 3 ! v v 0 Gotttfried sum rule 1 (u (x) ! d (x))dx = 1 " v v 0 Other relations 1 " (u(x) ! u(x))dx = 2 0 1 1 dx xf (x) = 1 (d(x) ! d (x))dx = 1 ! "i i " 0 0 1 " (s(x) ! s (x))dx = 0 0 Un-ki Yang, Frontier of Particle Physics II - DIS 22 Gluon? Sum of the momenta of all quarks should be the total proton momentum 1 dx xf (x) = 1 ! "i i 0 But all valence and sea quarks by u an d quarks carry only 50%.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us