Development of Eco-Compatible River Basin Management toward Nature Restoration ~ Case of Ise bay River Basin ~ Yuji Toda and Tetsuro Tsujimoto Nagoya University Nature Restoration Projects of Japanese Rivers (2006) Shibetsu River Ishikari River Kushiro River Maruyama River Iwaki River Akagawa River Mukawa River Shinano River Matsuura River Jinzu River Mabechi River Tone River Tenjin River Ara River Go-no River Tama River Turumi River Kano River Tenryu River Toyo River YahagiRiver KisoRiver Yamato River Yodo River Kako River Ibo River Yoshii River Shigenobu River Shimanto River Gokase River Kikuchi River Restoration of Riparian Wetland by Flood Re-meandering (Kushiro River) Plain Excavation (Matsuura River) Restoration of Tidal Mud Flats (Mu River) Restoration of Sediment Continuity along River (Image: from Pamphlet of Nature Restoration: Ministry of Land, Infrastructure, Transport and Tourism, JAPAN) Mountainous Area Restoration of Forest (Mt. Kunugi) Preservation of Grassland (Mt. Aso) Agricultural Area Coastal Area Reduction of Chemical Fertilizer Preservation of Tidal Mad Flats (Sanban-se) (Image: from Pamphlet of Nature Restoration: Ministry of the Environment, JAPAN) Each Project has own Objective Each project might somewhat contribute the sustainability of our society, but - How can we measure the contribution of each project to sustainability? - How can we design the eco-compatible and sustainable society? Today’s my talk: Introduction of a Joint research project of Ise Bay Eco- Compatible River Basin Research Project (from 2006 to 2011) Nagoya Univ., National Inst. For Land and Infrastructure Management, Pubic Work Research Inst., National Inst. For Environmental Studies, National Inst. Rural Engineering, National Inst. Fisheries Engineering, National Inst. Aquaculture Reconstruction of sustainable society “sustainability” Supported by “Eco-compatible” river basin management ①② ① Ecosystem provide proper “ecosystem service” ⇔ fossil fuels ② proper scale of national-land management significance of “river basin” Metropolises in Japan are located around a bay composed of multiple river basins and sea area= “river basin complex”③ Metropolitans in Japan River basin is a unit of “Hydrological Cycle” for global surface limited area by “divide” What happens in “river basin” Run-off process Precipitation – River flow – Evapo-transpiration Flow regime flux network of water Sediment fluvial process ---- morphology Materials, in particular “biophilic elements” Non-organic, Organic Habitat support nutrients bio-mass flux network of various materials Energy support (food) Biological aspect (individual, population, species richness, etc.) Ecosystem How to measure the degree of Eco-compatible? 1. Ecosystem reflects the soundness of water and material cycling 2. Ecosystem provides us Ecosystem Services Restore or Enhance Ecosystem Services! Ecosystem Services Humankind benefits by natural ecosystems Provisioning services • foods and spices • precursors to pharmaceutical and industrial products • energy (hydropower, biomass fuels) Regulating services • carbon sequestration and climate regulation • waste decomposition and detoxification • nutrient dispersal and cycling Supporting services • purification of water and air • crop pollination and seed dispersal • pest and disease control Cultural services • cultural, intellectual and spiritual inspiration • recreational experiences • scientific discovery Preserving services • genetic and species diversity for future use • accounting for uncertainty • protection of options Strategy What is the “Ecosystem”? to Discipline- How can we proceed research cooperation? Cooperation Ecosystem Physical basement A Sediment Flow transport Peculiar landscape Vegetation Morphology Habitat for material cycle B C Bio aspect Material Cycle Ecosystem function assimilation life history filtering growth, breeding Energy supply (de)nitrification Food web decomposition Competition Ecosystem function How does the ecosystem respond to human activities? Homeland development and sustainability ←Human activities Ecosystem Physical basement A Sediment Impact Flow transport Human Society (Human activities) Peculiar landscape Vegetation Morphology Habitat for material cycle Safety Resources B C Environments Bio aspect Material Cycle (Recreation, Amenity, Ecosystem function assimilation Cultures,….) life history filtering growth, breeding Energy supply (de)nitrification Food web decomposition Competition Ecosystem function Response Enhancement and Damage Model for mechanism (interactions) predicts Impact-Response relations River basin Local site Flux-in φ Ecosystem Divide分水嶺 A Physical basement Sediment Flow transport Natural Flux 自然フラックス網 Peculiar landscape Networks Habitat Vegetation Morphology for material cycle River流域 Basin B C Material Cycle 景観→生態系サービスLandscape Bio aspect フラックス変化 Ecosystem function assimilation “Ecosystem” life history filtering →Ecosystem service growth, breeding Energy supply (de)nitrification Food web decomposition River河川水系 Network Competition Ecosystem function Artificial 人工フラックス網Artificial Infrastructure Flux Network 人工施設(機能)→Functions Coastal沿岸域 Zone Flux-out φ+∆φ Ecosystem Coast海域 Service River basin is an assembly of networks of various materials Driven by hydrological cycle. In a river basin, there are various sites where original ecosystem exist. It brings “ecosystem service” while the fluxes may change locally but It propagates within a river basin through the flux network. In modern age, we added facilities (instead of ecosystem service) and artificial Flux networks (to strengthen). River basin complex River system River Basiin 2 Natural flux-network Divide River Basin 1 Artificial flux network Artificial Coast (traffic) channel Landscape element to Bay bring ecosystem service Artificial River Basin 6 facility Ocean What is ASSESSMENT for “eco-compatible” river basin-complex management and how to do it Each site ecosystem brings “Ecosystem service”(ES) there locally, and it changes the fluxes (φ) there, and it (∆φ) propagates anywhere inside the river basin. ES should be evaluated locally for the local value of φ (output of flux network). And, ES appearing locally in a river basin should be integrated. ∆φ imposing locally should be reflected to the flux network calculation, and Flux network calculation should be updated (Updated φ) Geography Precipitation Morphology Land use Tool Box 1 Artific Flux Classify to Flux network φ Categorized Flux Landscape Tool Box 2 change ∆φ Choice of Ecosystem service ES Scenario Tool Box 3 Integrated assessment of Eco-compatibility Precipitation Tool Box 1 Land use map Geography (Morphology) Material Sources Runoff model & Transport eq. Flux network of water Artificial Network Transport equation ∆φ φ Material flux network Interface Flux network φ Tool Box 1 Flux Network Land area: Hydrological Modeling Sea area: Flow computation Target Basin: Yahagi river Sub-Basin49 Sub-Basin45 2 Sub-Basin51 3 d n Natural Flux Network Yahagi dam 5 4 la y m n r d e s 8 t a d y r r F a it r e 6 P a h 12 10 res C B t 9 o O F Sub-Basin80 13 7 19 Sub-Basin52 15 11 14 Reach/Reservoir 22 20 18 16 24 36 35 37 34 33 32 25 39 38 31 17 Artificial Flux Network 41 40 21 29 (Water Withdrawal& Distribution) 23 Sub-Basin81 26 27 28 47 30 42 48 43 46 Forest 44 OtherPaddy Basins 61 OtherFarmland Basins 49 OtherCity Basins 45 Barren Meiji Weir 53 Others 50 62 51 54 60 52 59 58 63 65 56 64 55 57 69 66 68 67 Land Use (1997) Hosokawa Weir 77 70 Forest 80 71 78 76 Paddy 79 74 Farmland 75 81 73 City 72 1 Barren Others Otogawa Weir u, v その他 Example of flux computation: Yahagi River Basin φ=Water,Sediment,Nutrients, Organic 上流(矢作ダム)地点 計算流量(左軸) 計算土砂負荷量(右軸) 全窒素 全リン 全COD 1000 10000 10000 50000 800 8000 8000 40000 600 6000 6000 30000 400 4000 4000 20000 流量[m3/sec]流量[m3/sec] 河川負荷量[kg/hour]河川負荷量[kg/hour] 200 2000 土砂負荷量[ton/hour]土砂負荷量[ton/hour] 2000 10000 河川負荷量[kgCOD/hour]河川負荷量[kgCOD/hour] 0 0 0 0 2 3 2004/9/1 2004/10/1 2004/10/31 2004/9/1 2004/10/1 2004/10/31 2004/9/1 2004/10/1 2004/10/31 Target Basin 5 4 8 6 12 10 9 13 7 19 15 11 14 22 20 18 24 36 35 16 37 34 33 32 25 39 38 中流(高橋観測所)地点 31 17 41 40 21 29 23 計算流量(左軸) 計算土砂負荷量(右軸) 26 27 28 全窒素 全リン 全COD 47 30 42 48 43 46 1000 10000 10000 50000 44 61 49 45 50 53 62 800 8000 8000 40000 51 54 60 52 59 58 63 65 56 600 6000 6000 30000 64 55 57 69 66 68 67 77 400 4000 70 4000 20000 80 71 流量[m3/sec] 流量[m3/sec] 78 76 79 74 75 河川負荷量[kg/hour]河川負荷量[kg/hour] 81 73 200 2000 土砂負荷量[ton/hour]土砂負荷量[ton/hour] 2000 10000 1 72 河川負荷量[kgCOD/hour]河川負荷量[kgCOD/hour] 0 0 0 0 河口 2004/9/1 2004/10/1 2004/10/31 2004/9/1 2004/10/1 2004/10/31 2004/9/1 2004/10/1 2004/10/31 下流(米津観測所)地点 計算流量(左軸) 計算土砂負荷量(右軸) 全窒素 全リン 全COD 1000 10000 10000 50000 800 8000 8000 40000 600 6000 6000 30000 COD/hour] COD/hour] [kg/hour] [kg/hour] [kg[kg 400 4000 4000 20000 流量[m3/sec] 流量[m3/sec] 河川負荷量河川負荷量 200 2000 土砂負荷量[ton/hour]土砂負荷量[ton/hour] 2000 10000 河川負荷量河川負荷量 0 0 0 0 2004/9/1 2004/10/1 2004/10/31 2004/9/1 2004/10/1 2004/10/31 2004/9/1 2004/10/1 2004/10/31 Flux of each location can be evaluated by Tool Box 1 Spatial variation of flux can be also evaluated by Tool Box 1 φ(x) 2,500 明 治 枝 岩 矢 頭 下 倉 作 2,000 首 用 頭 ダ 工 水 首 ム m3/year] 工 Water 6 1,500 1,000 500 年間流量 年間流量 [×10 0 5,000 明 枝 岩 4,000 治 矢 頭 下 倉 作 Nutrient (Total Target Basin 2 首 用 頭 3 ダ 5 4 水 首 3,000 工 ム -Nitrogen 8 工 6 12 10 9 13 7 2,000 19 15 11 14 22 20 18 24 36 16 37 35 34 331,000 32 25 39 38 31 年間全窒素負荷量 [ton/year] 17 41 40 21 29 23 26 27 0 28 47 30 42 48 43 14,000 明 46 44 治 枝 岩 61 矢 49 12,000 頭 下 倉 45 作 53 首 用 頭 50 ダ Organic Material 62 10,000
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages31 Page
-
File Size-