Solid State Lighting

Solid State Lighting

Solid State Lighting Michael Shur Rensselaer Polytechnic Institute ECSE, Physics and Broadband Center http://nina.ecse.rpi.edu/shur From a Torch to Blue and White LEDs and to Solid State Lamps Blue LED on Si, Courtesy of SET, Inc. http://nina.ecse.rpi.edu/shur/ 1 Research Areas • Plasma wave electronics –THz resonant emission and detection • Wide band gap materials and devices – MOSHFET, UV LEDs, SAW, polarization, transport • Sensitive skin – Flexible substrates, nano gauges, electrotextiles, TFTs, OTFTs • Novel device CAD – AIM-Spice, opto/thermo/micro CAD •Lab-on-the-WEB – http://nina.ecse.rpi.edu/shur/remote • Broadband center http://nina.ecse.rpi.edu/shur • Solid state lighting http://nina.ecse.rpi.edu/shur/ 2 Talk Outline • History of General and Electric Lighting • Advantages of Solid State Lighting • Introduction to Photometry and Colorimetry • Optimization of Solid State Lamps • Emerging applications • Vision http://nina.ecse.rpi.edu/shur/ 3 Lighting – prerequisite of human civilization • 500,000 years ago- first torch • 70,000 years ago – first lamp (wick) • 1,000 BC – the first candle • 1772 - gas lighting Yablochkov candle (1876) • 1784 Agrand lamp - Agrand lamp the first lamp relied on research (Lavoisier) • 1826 -Limelight - solid- state lighting device • 1876 – Yablochkov candle • 1879 – Edison bulb Limelight Edison bulb (1879) http://nina.ecse.rpi.edu/shur/ 4 History of Electric Lighting • 1876 Pavel Yablochkov. First electric lighting device • 1879 Thomas Alva Edison. Incandescent lamp • 1897 Nernst. Filament made of cerium oxide-based solid electrolyte. • 1900 Peter Cooper Hewitt. Mercury vapor lamp. 1903. A. Just and F. Hanaman. Tungsten filament • 1904 Moor. Discharge lamps with air • 1907 H. J. Round. First LED (SiC) • 1910 P. Claude. Discharge lamps with inert gases • 1938 GE and Westinghouse Electric Corporation Fluorescent lamps. http://nina.ecse.rpi.edu/shur/ 5 First LED (1907) http://nina.ecse.rpi.edu/shur/ 6 Lighting in James Joyce Room Shakespeare Hotel, Bernadinu 8/8 Vilnius, Lithuania (09/05/02) Incandescent First LED stamp Fluorescent http://nina.ecse.rpi.edu/shur/ 7 An improvementof luminousefficiencyby1%saves Innovation in Semiconductor Illumination: Data fromR. Haitz,F.Kish,J.Tsao, andJ.Nelson LED Penetration(%) 10 6 8 4 2 0 2000 2010 2020 2030 Benefits ofLEDLighting 2 billionsdollarsper year. Opportunities for National Impact (2000) Year 100 120 “Low Investment Model” 80 60 20 40 http://nina.ecse.rpi.edu/shur/ Cost Savings $USB/yr Investment Model” “High 8 Solid State Lighting 100 80 Efficiency (lm/W) 60 40 20 0 Incandescent Halogen Fluorescent White LED White LED (2000) (2010) 120 100 Lifetime (1000 h) 80 2002 60 40 20 0 Incandescent Halogen Fluorescent White LED White LED (2000) (2010) http://nina.ecse.rpi.edu/shur/ 9 Challenges of Solid State Lighting • Reduce cost • Improve efficiency of light generation • Improve efficiency of light extraction • Improve quality of light http://nina.ecse.rpi.edu/shur/ 10 Cost of Light Fluorescent tubes: •Incandescent bulbs: dollar per lumen 0.01 Dollar per lumen 1/1100 White LED: dollar per lumen Re LED: 0.25 (Lumileds) dollar per lumen0.1 0.66 (Nichia) http://nina.ecse.rpi.edu/shur/ 11 Evolution of lm/package and cost/lm for red LEDs After Roland Haitz Agilent Technologies http://nina.ecse.rpi.edu/shur/ 12 Challenges in epoxy ne light extraction θc ns Conventional LED chip grown active layer on an absorbing substrate. absorbing substrate High-brightness LED chip design (b) with thick transparent window layers Light escapes through 6 cones From A. Žukauskas, M. S. Shur, R. Gaska, MRS Bull. 26, 764, 2001. http://nina.ecse.rpi.edu/shur/ 13 Progress in AlInGaP LEDs After http://www.lumileds.com/technology/tutorial/slide2.htm http://nina.ecse.rpi.edu/shur/ 14 Light Extraction : TIP-LEDs from LumiLeDs 1000 high pressure sodium 1 kW TIP-LED t t 100 fluorescent 1 W a w mercury vapor 1 kW / n halogen 30 W e m Standard tungsten 60 W u 10 L AlGaInP/GaP red filtered tungsten 60 W Top contact 1 550 600 650 700 750 Peak wavelength (nm) After M.O. HOLCOMB et al. (2001), Compound Semiconductor 7, 59, 2001). http://nina.ecse.rpi.edu/shur/ 15 Photometry: Eye sensitivity 0 10 Photopic vision (cones) V'(λ) V(λ) @ High Illumination 10-1 10-2 Scotopic vision (rods) @ Low illumination 10-3 Relative Sensitivity 10-4 10-5 400 500 600 700 800 Wavelength (nm) Cones are red, green, and blue http://nina.ecse.rpi.edu/shur/ 16 Radiometry and Photometry Photopic vision eye sensitivity Watt Φ = 683 lm W × Φ V λ dλ υ ∫ e ( ) W/nm W/nm Luminous flux Wavelength (nm) I = dΦ dω = 683 lm W × I V λ dλ υ υ ∫ e ( ) Luminous intensity 1/60 of the luminous intensity per square centimeter of a (Candela = lm/sr – SI unit) blackbody radiating at the temperature of 2,046 Luminous efficiency: power into degrees Kelvin actuation of vision (lm/W) http://nina.ecse.rpi.edu/shur/ 17 How much light do you need? Type of Activity Illuminance (lx =lm/m2) Orientation and simple visual 30-100 tasks (public spaces) Common visual tasks (commercial, 300-1000 industrial and residential applications) Special visual tasks, including 3,000-10,000 those with very small or very low contrast critical elements http://nina.ecse.rpi.edu/shur/ 18 Colorimetry: Chromaticity Coordinates 1931 CIE color matching functions: purple, green, and blue 2.0 X = x λ S λ dλ _ ( ) ( ) blue ∫ z Y = y(λ) S(λ) dλ 1.5 green_ ∫ _ y Z = z(λ) S(λ) dλ x purple ∫ 1.0 X x = X + Y + Z 0.5 Y y = 0.0 X + Y + Z 350 400 450 500 550 600 650 700 750 Wavelength (nm) x+y+z = 1 http://nina.ecse.rpi.edu/shur/ 19 Color Coordinates [Y] 1.0 520 [G] Green 530 Planckian locus 0.8 540 510 (black body radiation) 560 0.6 500 580 A 2 3 0.4 E , 600 D , 0 65 B 0 0 4 0 0 Red , 0 0 620 6,00 0 490 C 0 [R] 0 10 640 ,0 00 700 Is it really that bad? 0.2 y Chromaticity Coordinate Just remember: 480 Blue [B] White is Black! [Z] 460 0.0 400 [X] 0.0 0.2 0.4 0.6 0.8 1.0 x Chromaticity Coordinate http://nina.ecse.rpi.edu/shur/ 20 Color Mixing •Red, green, blue appear as white •Red and blue appear as magenta •Green and blue give cyan 520 0.8 530 •Red and green give yellow 540 510 YG G 560 0.6 500 Y 580 0.4 600 C(W) O 620 490 640 700 0.2 y Chromaticity Coordinate Chromaticity y B 480 P 460 400 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 x Chromaticity Coordinate http://nina.ecse.rpi.edu/shur/ 21 Color Rendering 1.0 0.8 Light grayish red Light bluish green 0.6 0.4 General Color Rendering 0.2 Index 0.0 1.0 R (CRI) 0.8 Dark grayish yellow Light blue a 0.6 integrates the reflectivity 0.4 y t i 0.2 data for 8 v i t 0.0 c e 1.0 specified samples l f e 0.8 Strong yellow green Light violet R Special color rendering 0.6 0.4 indices, 0.2 0.0 refer to six additional test 1.0 0.8 Moderate yellowish green Light reddish purple samples 0.6 R varies up to 100 0.4 a 0.2 100 is the best. 0.0 400 500 600 700 400 500 600 700 R might be negative Wavelength (nm) a http://nina.ecse.rpi.edu/shur/ 22 Generating White Light Phosphor-conversion Multichip white white LED LED Phosphor layer InGaN chip http://nina.ecse.rpi.edu/shur/ 23 How to Optimize Solid State lamp: maximize the objective function (K ) Fσ ()λ1, …, λn , I1, …, I n = σK + (1−σ )Ra where σ is the weight that controls the trade-off between the efficacy, K, and color rendering index, Ra λ1, λ2, λ3,… and I1, I2, I3 are the peak wavelengths and relative powers of the primary LEDs, respectively For a dichromatic lamp (two primary LEDs), the optimal solutions can be obtained by simple searching within the wavelength space involving complementary pairs of blue and yellow-green LEDs. http://nina.ecse.rpi.edu/shur/ 24 Optimization of Polychromatic Solid-State White Lamps 100 481/580 nm 464/543/613 nm 456/537/601 nm 20 80 489/591 nm 454/543/597 nm 0 60 380/569 nm -20 450/571 nm 40 3 Primary LEDs -40 2 primary LEDs 20 496/635 nm -60 0 General Color Rendering Color General Index 0 100 200 300 400 General Color Rendering Index 300 350 400 Luminous Efficacy (lm/W) Luminous Efficacy (lm/W) http://nina.ecse.rpi.edu/shur/ 25 General CRI, Luminous Efficacy, and LED Wavelengths of Optimized Polychromatic Lamps 99.5 660 2 LEDs 99 5 640 3 LEDs 98 4 4 LEDs 2 LEDs 620 95 3 LEDs 5 LEDs 600 90 4 LEDs 3 580 80 5 LEDs 560 70 60 540 50 520 40 30 500 20 General CRI 480 10 460 5 2 440 Peak wavelength (nm)Peak wavelength 420 320 340 360 380 400 420 440 2 5 10 20 30 40 50 60 70 80 90 95 98 9999.5 Luminous Efficacy (lm/W) General CRI The 30-nm line widths (A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska and M. S. Shur, Optimization of White Polychromatic Semiconductor Lamps, Appl.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    64 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us