Neutrino Properties: Nature, Mass & CP Violation

Neutrino Properties: Nature, Mass & CP Violation

Neutrino properties: nature, mass & CP violation I. Schienbein LPSC prepared together with P. Serpico (LAPTH) and A. Wingerter (LPSC) Kick-off meeting, 12/10/2012, Annecy Friday, October 12, 12 Facts of life with neutrinos Friday, October 12, 12 Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov) − p η L,B < 8.9 × 10 6 CL=90% 475 D86 − p π0 ηCitation: J. Beringer et al. (ParticleL Data,B Group),< PR 2.7 , 010001 (2012)× (URL:10 5 http://pdg.lbl.gov)CL=90% 360 − − Λπ L,B < 7.2 × 10 8 CL=90% 525 −Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012)× (URL:−−6 http://pdg.lbl.gov) Λpπη L,B << 81..94 ×1010 7 CL=90%CL=90% 475 525 − − 0 L B < . × −5 ep πlightη boson LF, < 22.77 ×1010− 3 CL=90%CL=95% 360– p η − L,B < 8.9 × 10 −6 CL=90% 475 Λ−π L,B < 7.2 ××10 −83 CL=90% 525 µ light0 boson LF < 5 10−5 CL=95% – p π −η L,B < 2.7 ××10 −7 CL=90% 360 Λπ− L,B < 1.4 10− CL=90% 525 Λ− L,B < 7.2 × 10 −8 CL=90% 525 e π light boson LF < 2.7 × 10 3 CL=95% – − −7 Λ−π L,B < 1.4 ××10 −3 CL=90% 525 µHeavy− light boson Charged LeptonLF Searches< 5 10− CL=95% – e light boson LF < 2.7 × 10 3 CL=95% – Neutrino properties:− × −3 LF µ light boson± < 5 10 CL=95% – HeavyL Charged–chargedlepton Lepton Searches Mass m > 100.8GeV,CL=95%[h] Decay to ν W . What we knowHeavy± Charged in 2012 Lepton Searches ±± LL± –stablechargedheavylepton–chargedlepton ± [h] L± Mass–chargedleptonMass mm >> 102100.6GeV,CL=95%8GeV,CL=95% Decay to ν W . ± L Mass–stablechargedheavyleptonm > 100.8GeV,CL=95%[h] Decay to ν W . ± • very weakly interacting, NeutrinoL± –stablechargedheavyleptonMass Propertiesm > 102.6GeV,CL=95% Mass m > 102.6GeV,CL=95% electrically neutral, spin 1/2, SeeNeutrino the note Properties on “Neutrino properties listings” in the Particle Listings. Mass m < 2eV (tritiumdecay) tiny mass Neutrino Properties See the noteMean on “Neutrino life/mass, propertiesτ/m > 300 listings” s/eV, in CL the = Partic 90%le Listings. (reactor) Mean life/mass, τ/m > 7 × 109 s/eV (solar) See the noteMass on “Neutrinom < 2eV properties (tritiumdecay) listings” in the Particle Listings. MeanMean life/mass, life/mass, τ/m > 30015.4s/eV,CL=90% s/eV, CL = 90% (reactor) (accelerator) long lived (or stable), Mass m < 2eV (tritiumdecay)− • Magnetic moment µ<m 0.×32 ×910 10 µ ,CL=90% (solar) MeanMean life/mass, life/mass, ττ//m >> 3007 s/eV,10 s/eV CL =B 90%(solar) (reactor) tiny or vanishing magnetic MeanMean life/mass, life/mass, ττ//mm >> 715×.4s/eV,CL=90%109 s/eV (solar) (accelerator) µ< . × −10 µ Number ofMeanMagnetic Neutrino life/mass, moment Typesτ/m > 150 32.4s/eV,CL=90%10 B ,CL=90% (accelerator) (solar) moment −10 Magnetic moment µ<0.32 × 10 µB ,CL=90% (solar) NumberNumber of NeutrinoN =2 Types.984 ± 0.008 (Standard Model fits to LEP data) NumberNumber of NeutrinoN =2 Types.92 ± 0.05 (S = 1.2) (Direct measurement of NumberinvisibleN =2Z width).984 ± 0.008 (Standard Model fits to LEP data) • 3 light ‘SM families’ (νe ,νμ , ντ) NumberNumber NN =2=2..98492 ±±00..05008 (S (Standard = 1.2) (DirectModel fits measurement to LEP data) of invisibleN Z .width)± . NeutrinoNumber Mixing =292 0 05 (S = 1.2) (Direct measurement of invisible Z width) TheNeutrino following Mixing values are obtained through data analyses based on theNeutrinoCitation: 3-neutrino J. Beringer Mixing mixinget al. (Particle scheme Data described Group), PR D86 in, the 010001 review (2012) (URL: “Neutr http://pdg.lbl.gov)ino Mass,The following Mixing, andvalues Oscillations” are obtained by through K. Nakamura data analyses and S.T. bas Petced onov 2 neutrinos oscillate ⟺ mν≠0 inThethe this 3-neutrino followingReviewsin . values(2 mixingθ12)=0 are scheme obtained.857 ± described0. through024 in data the review analyses “Neutr basedino on • Mass, Mixing,2 and Oscillations”± by× K.− Nakamura5 2 and S.T. Petcov the 3-neutrino∆m21 mixing=(7. scheme50 0. described20) 10 ineV the review “Neutrino Review2 [i] Mass,in this Mixing,sin .(2 andθ23 Oscillations”) > 0.95 by K. Nakamura and S.T. Petcov in this Review.2 +0.12 × −3 2[j] ∆m32 =(2.32−0.08) 10 eV 2 sin (2θ13)=0.098 ± 0.013 HTTP://PDG.LBL.GOV Page 9 Created: 6/18/2012 15:05 Heavy Neutral Leptons, Searches for Friday, October 12, 12 HTTP://PDG.LBL.GOV Page 9 Created: 6/18/2012 15:05 ForHTTP://PDG.LBL.GOV excited leptons, see Compositeness Page Limits 9 below. Created: 6/18/2012 15:05 Stable Neutral Heavy Lepton Mass Limits Mass m > 45.0GeV,CL=95% (Dirac) Mass m > 39.5GeV,CL=95% (Majorana) Neutral Heavy Lepton Mass Limits Mass m > 90.3GeV,CL=95% (Dirac νL coupling to e, µ, τ;conservativecase(τ)) Mass m > 80.5GeV,CL=95% (Majorana νL coupling to e, µ, τ;conservativecase(τ)) NOTES [a]Thisisthebestlimitforthemodee− → νγ.Thebestlimitfor“electron disappearance” is 6.4 × 1024 yr. [b]Seethe“NoteonMuonDecayParameters”intheµ Particle Listings for definitions and details. [c] Pµ is the longitudinal polarization of the muon from pion decay.In standard V −A theory, Pµ =1andρ = δ =3/4. − [d]Thisonlyincludeseventswiththeγ energy > 10 MeV. Since the e νe νµ − and e νe νµ γ modes cannot be clearly separated, we regard the latter mode as a subset of the former. [e]SeetherelevantParticleListingsfortheenergylimitsused in this mea- surement. [f ]Atestofadditivevs.multiplicativeleptonfamilynumberconservation. [g]Basismodefortheτ. [h] L± mass limit depends on decay assumptions; see the Full Listings. 2 [i]Thelimitquotedcorrespondstotheprojectionontothesin (2θ23)axis 2 − 2 of the 90% CL contour in the sin (2θ23) ∆m32 plane. 2 [j]Thesignof ∆m32 is not known at this time. The range quoted is for the absolute value. HTTP://PDG.LBL.GOV Page 10 Created: 6/18/2012 15:05 Neutrinos oscillate! Friday, October 12, 12 Neutrino oscillations Flavor basis: • 3 neutrino states → 3 masses m1, m2 , m3 ⌫ , ⌫ , ⌫ {| ei | µi | ⌧ i} • States with definite masses (mass eigenstates) in general do not coincide with flavor states Mass basis: ⌫1 , ⌫2 , ⌫3 • Quantum mechanics: {| i | i | i} States with same quantum numbers can mix, as it happens for the quarks d0 d CKM s0 = V s 0 1 0 1 • The mixing matrices V are 3x3 unitary b0 b matrices @ A @ A ‣ CKM = Cabibbo-Kobayashi-Maskawa ⌫e ⌫1 ⌫ = V PMNS ⌫ ‣ PMNS = Pontecorvo; 0 µ1 0 21 Maki-Nakagawa-Sakata ⌫⌧ ⌫3 @ A @ A Friday, October 12, 12 Neutrino oscillations • Consider 2 flavor case: ‣ for simplicity ‣ dominant oscillations are well- described by 2-flavor mixing ⌫ = cos ✓ ⌫ +sin✓ ⌫ • Flavor and mass eigenstates connected | µi | 1i | 2i by a 2x2 rotation matrix ⌫ = sin ✓ ⌫ + cos ✓ ⌫ | ⌧ i − | 1i | 2i Neutrino propagation: νμ created at t=0 with 3-momentum p ⌫(0) = ⌫µ = cos ✓ ⌫1 +sin✓ ⌫2 • | i | i | i | i iE t iE t Neutrino state at time t ⌫(t) = e− 1 cos ✓ ⌫ + e− 2 sin ✓ ⌫ • | i | 1i | 2i Different mass components have different m2 m2 • E = p2 + m2 p + i p + i ]a) energy i i ' 2p ' 2E q Friday, October 12, 12 Neutrino oscillations Oscillation probability: P (⌫ ⌫ ; t)= ⌫ ⌫(t) 2 µ ! ⌧ |h ⌧ | i| iE t iE t 2 = sin ✓ ⌫ + cos ✓ ⌫ e− 1 cos ✓ ⌫ + e− 2 sin ✓ ⌫ |{− h 1| h 2|}{ | 1i | 2i}| 2 2 iE t iE t 2 = cos ✓ sin ✓ e− 2 e− 1 | − | = 2 cos2 ✓ sin2 ✓ 1 cos[(E E )t] { − 2 − 1 } 2 2 2 ∆m 2 2 2 =sin 2✓ sin t ∆m = m2 m1 4E − As function of distance L=c*t=t: ∆m2 P (⌫ ⌫ ; L)=sin2 2✓ sin2 L µ ! ⌧ 4E L/E determines 2 2 2 2 L(km) =sin 2✓ sin 1.27∆m (eV ) sensitivity to E(GeV) 2 Δm Friday, October 12, 12 Neutrino oscillations 3 flavor oscillations: atmospheric solar cross mixing ^J) Friday, October 12, 12 Neutrino state cross-composition ^H) The final 3 flavor mixing scheme" Results inThe the final 33 flavor flavor mixing scheme mixing" scheme Neutrino state cross-composition 58)6%"7&$0$()U)53%&-)HIJH) JH`) ^H) 58)6%"7&$0$()U)53%&-)HIJH) JH`) Discovery of a non-zero angle θ13! Friday, October 12, 12 Leptonic CP violation: δCP ≠ 0? • θ13 ≠ 0 : necessary condition for leptonic CP violation ‣ θ13 = 0: effective 2 flavor mixing ‣ CP violation only with unitary 3x3 matrices (or larger) • Dirac-neutrinos: 1 CP violating phase • Majorana-neutrinos: 2 additional CP violating phases • CP violation in quark sector not sufficient to explain the baryon asymmetry of the universe (BAU) • Leptonic CPV would give an additional contribution Measurement of δCP exciting challenge Friday, October 12, 12 Neutrinos and the Standard Model Friday, October 12, 12 Neutrinos and the Standard Model • Neutrino oscillations: The Standard Model ‣ at least two massive neutrino states ‣ why should neutrinos be massless anyway? Particles Spin SU(3)C SU(2)L U(1)Y (no symmetry) uL 1 1 Q = 2 323 dL 3c 4 1 4 In the original SM, neutrinos are massless uR 2 31 3 • c 1 ≠2 ⇒ oscillation results = physics beyond the SM dR 2 313 ‹L 1 L = 2 12-1 However, massive neutrinos possible by a eL • 3c 4 1 ‹R 2 1 1 0 minimal extension of the SM: c 1 eR 2 112 Φ+ H = 0 1 2 1 ‣ right-handed neutrino Φ0 3– 4 Gµ 1 810 ‣ gauge singlet (“sterile neutrino”) a Wµ 1 130 11 ‣ can be a Dirac fermion like the electron Bµ 1 0 ★ mass term via Yukawa interaction with Higgs boson (Higgs mechanism) 3/20 ★ neutrino masses of order meV: tiny(!) Yukawa couplings Friday, October 12, 12 Neutrinos and the Standard Model • Neutrino oscillations: ‣ at least two massive neutrino statesThe Standard Model ‣ why should neutrinos be massless anyway? (no symmetry) Particles Spin SU(3)C SU(2)L U(1)Y uL 1 1 Q = 2 323 In the original SM, neutrinos are massless dL • 3c 4 1 4 ⇒ oscillation results = physics beyond the SM uR 2 31 3 c 1 ≠2 dR 2 313 Conversely, neutrino only fermion in the SM ‹L 1 • L = 2 12-1 without electric charge: eL 3c 4 1 ‹R 2 1 1 0 0 0 c 1 ‣ can be its own anti-particle (like γ, Z ,π ,η) eR 2 112 Φ+ H

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us