The Associahedron and Its Friends V

The Associahedron and Its Friends V

THE ASSOCIAHEDRON AND ITS FRIENDS V. PILAUD (CNRS & LIX) S´eminaire Lotharingien de Combinatoire April 4 { 6, 2016 PROGRAM I. THREE CONSTRUCTIONS OF THE ASSOCIAHEDRON • Compatibility fan and cluster algebras • Loday's associahedron and Hopf algebras • Secondary polytope II. GRAPH ASSOCIAHEDRA • Graphical nested complexes • Compatibility fans for graphical nested complexes • Signed tree associahedra III. BRICK POLYTOPES AND THE TWIST ALGEBRA • [Multi][pseudo]triangulations and sorting networks • The brick polytope • The twist algebra I. THREE CONSTRUCTIONS OF THE ASSOCIAHEDRON α2 @@ p @ ¢ p B ¢ p B @ p B @ ¢ p ¢ p B @ p B α2+α3 @ ¢ p ¢ p B @ α1+p α2 ¢@ ¢ p ¢ @ p ¢ p ¢ @ ¢ p ¢ @ ¢ p ¢ p α1+α2+α¢¢ 3 ¢ p ¢ p @ ¢ α3 p @ ¢ p p @ ¢ p p p p p p p p p p p p p@ p p¢ p p p p p p p p p p p p p p pp p p p p α1 p p p p p p p p p p p p p p p p FANS & POLYTOPES Ziegler, Lectures on polytopes ('95) Matouˇsek, Lectures on Discrete Geometry ('02) SIMPLICIAL COMPLEX simplicial complex = collection of subsets of X downward closed exm: X =[ n] [ [n] 123 123 123 123 123 123 123 123 ∆ = fI ⊆ X j 8i 2 [n]; fi;i g 6⊆ Ig 12 13 13 12 23 23 23 23 12 13 13 12 1 2 3 3 2 1 FANS polyhedral cone = positive span of a finite set of Rd = intersection of finitely many linear half-spaces fan = collection of polyhedral cones closed by faces and where any two cones intersect along a face simplicial fan = maximal cones generated by d rays POLYTOPES polytope = convex hull of a finite set of Rd = bounded intersection of finitely many affine half-spaces face = intersection with a supporting hyperplane face lattice = all the faces with their inclusion relations simple polytope = facets in general position = each vertex incident to d facets SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES P polytope, F face of P normal cone of F = positive span of the outer normal vectors of the facets containing F normal fan of P = f normal cone of F j F face of P g simple polytope =) simplicial fan =) simplicial complex EXAMPLE: PERMUTAHEDRON Hohlweg, Permutahedra and associahedra ('12) PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g 4321 \ n+1 X jJj + 1 = H \ x 2 R xj ≥ 4312 2 3421 ?6=J([n+1] j2J 3412 4213 2431 2413 2341 3214 1432 2314 1423 3124 1342 1324 2134 1243 1234 PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g 4321 \ n+1 X jJj + 1 = H \ x 2 R xj ≥ 4312 2 3421 ?6=J([n+1] j2J 3412 connections to 4213 • weak order 2431 • reduced expressions 2413 • braid moves • cosets of the symmetric group 2341 3214 1432 2314 1423 3124 1342 1324 2134 1243 1234 PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g 4321 \ n+1 X jJj + 1 3211 = H \ x 2 R xj ≥ 3321 4312 2 2211 2 3421 3312 ?6=J([n+1] j J 2311 3412 3212 connections to 2321 4213 • weak order 2312 2212 2431 • reduced expressions 1211 3213 2331 2413 • braid moves 1321 • cosets of the symmetric group 2341 2313 3214 1221 1312 2113 k-faces of Perm(n) 1231 1432 2314 1322 1423 1212 3124 ≡ surjections from [n + 1] 1332 1213 to [n + 1 − k] 1342 1323 2123 1222 1112 1232 1324 1223 2134 1243 1233 1123 1234 PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g 4|3|2|1 \ n+1 X jJj + 1 34|2|1 = H \ x 2 R xj ≥ 4|3|12 3|4|2|1 2 34|12 2 4|3|1|2 3|4|12 ?6=J([n+1] j J 34|1|2 3|4|1|2 3|24|1 connections to 4|13|2 3|2|4|1 | | • weak order 3 14 2 3|124 4|1|3|2 • reduced expressions 134|2 3|2|14 4|1|23 3|1|4|2 • braid moves | | | 14|3|2 • cosets of the symmetric group 4 1 2 3 3|1|24 3|2|1|4 14|23 13|4|2 | | k-faces of Perm(n) | | 1|4|3|2 3|1|2|4 23 1 4 14 2 3 | | | 13|24 | | | ≡ surjections from [n + 1] | | 1 3 4 2 2 3 1 4 1 4 23 13|2|4 to [n + 1 − k] | | | 13|2|4 2|13|4 1 4 2 3 ≡ ordered partitions of [n + 1] 1|234 123|4 1|24|3 1|3|2|4 into n + 1 − k parts 1|23|4 2|1|3|4 1|2|4|3 12|3|4 1|2|34 1|2|3|4 PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g 4|3|2|1 \ n+1 X jJj + 1 34|2|1 = H \ x 2 R xj ≥ 4|3|12 3|4|2|1 2 34|12 2 4|3|1|2 3|4|12 ?6=J([n+1] j J 34|1|2 3|4|1|2 3|24|1 connections to 4|13|2 3|2|4|1 | | • weak order 3 14 2 3|124 4|1|3|2 • reduced expressions 134|2 3|2|14 4|1|23 3|1|4|2 • braid moves | | | 14|3|2 • cosets of the symmetric group 4 1 2 3 3|1|24 3|2|1|4 14|23 13|4|2 | | k-faces of Perm(n) | | 1|4|3|2 3|1|2|4 23 1 4 14 2 3 | | | 13|24 | | | ≡ surjections from [n + 1] | | 1 3 4 2 2 3 1 4 1 4 23 13|2|4 to [n + 1 − k] | | | 13|2|4 2|13|4 1 4 2 3 ≡ ordered partitions of [n + 1] 1|234 123|4 1|24|3 1|3|2|4 into n + 1 − k parts 1|23|4 2|1|3|4 1|2|4|3 12|3|4 ≡ collections of n − k nested 1|2|34 1|2|3|4 subsets of [n + 1] COXETER ARRANGEMENT Coxeter fan fan defined by the hyperplane arrangement 4|3|2|1 = 34|12 3|4|2|1 2 n+1 x R xi = xj 1≤i<j≤n+1 | | | = collection of all cones 4 3 1 2 | | | 3 4 1 2 +1 x 2 n x < x if π(i) < π(j) 4|1|2|3 3|2|4|1 R i j 3|124 for all surjections π :[n + 1] ! [n + 1 − k] 4|1|3|2 134|2 3|1|4|2 14|23 3|2|1|4 3|1|2|4 1|4|3|2 1|3|4|2 13|24 (n − k)-dimensional cones ≡ surjections from [n + 1] 1|4|2|3 2|3|1|4 to [n + 1 − k] 1|3|2|4 123|4 ≡ ordered partitions of [n + 1] | 1 234 into n + 1 − k parts 1|2|4|3 2|1|3|4 ≡ collections of n − k nested 1|2|3|4 subsets of [n + 1] ASSOCIAHEDRA Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11) ASSOCIAHEDRON Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion vertices $ triangulations vertices $ binary trees edges $ flips edges $ rotations faces $ dissections faces $ Schr¨oder trees VARIOUS ASSOCIAHEDRA Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion Tamari ('51) | Stasheff ('63) | Haimann ('84) | Lee ('89) | (Pictures by Ceballos-Santos-Ziegler) . | Gel'fand-Kapranov-Zelevinski ('94) | . | Chapoton-Fomin-Zelevinsky ('02) | . | Loday ('04) | . | Ceballos-Santos-Ziegler ('11) THREE FAMILIES OF REALIZATIONS SECONDARY LODAY'S CHAP.-FOM.-ZEL.'S POLYTOPE ASSOCIAHEDRON ASSOCIAHEDRON α2 @@ (Pictures by CFZ) p @ ¢ p B ¢ p B @ p B @ ¢ p ¢ p B @ p B α2+α3 @ ¢ p ¢ α +pα B @ 1 p 2 ¢@ ¢ p ¢ @ p ¢ p ¢ @ ¢ p ¢ @ ¢ p ¢ p α1+α2+α¢¢3 ¢ p ¢ p @ ¢ α3 p @ ¢ p @ ¢ p p p p p p p p p p p p p p p@ p p¢ p p p p p p p p p p p p p p pp p pα p p 1 p p p p p p p p p p p p Gelfand-Kapranov-Zelevinsky ('94) Loday ('04) p p Chapoton-Fomin-Zelevinskyp ('02) Billera-Filliman-Sturmfels ('90) Hohlweg-Lange ('07) Ceballos-Santos-Ziegler ('11) Hohlweg-Lange-Thomas ('12) THREE FAMILIES OF REALIZATIONS SECONDARY LODAY'S CHAP.-FOM.-ZEL.'S POLYTOPE ASSOCIAHEDRON ASSOCIAHEDRON α2 @@ (Pictures by CFZ) p @ ¢ p B ¢ p B @ p B @ ¢ p ¢ p B @ p B α2+α3 @ ¢ p ¢ α +pα B @ 1 p 2 ¢@ ¢ p ¢ @ p ¢ p ¢ @ ¢ p ¢ @ ¢ p ¢ p α1+α2+α¢¢3 ¢ p ¢ p @ ¢ α3 p @ ¢ p @ ¢ p p p p p p p p p p p p p p p@ p p¢ p p p p p p p p p p p p p p pp p pα p p 1 p p p p p p p p p p p p Gelfand-Kapranov-Zelevinsky ('94) Loday ('04) p p Chapoton-Fomin-Zelevinskyp ('02) Billera-Filliman-Sturmfels ('90) Hohlweg-Lange ('07) Ceballos-Santos-Ziegler ('11) Hohlweg-Lange-Thomas ('12) H α2 H H ¡¡ A H p A2α2 + α3H Hopf ¡ p A @ p HH @ Cluster ¡ p H ¡ p @ algebra ¡ p @ ¡α1+αp2 @ algebras p @ ¡ p HH ¡ p ¡¡ H α2+α3 @ Cluster p ¡ p ¡ BB 2αp 1 + 2α2 + α3 ¡ p ¡ B ¡ ¡p B algebras pHH p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p H ¡@@ α p p H 3 p p H¡ @ p p α1 @@ ¡ p p p p @¡ p p p p p p p p COMPATIBILITY FAN Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized assoc.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    258 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us