Flux Tubes, Domain Walls and Orientifold Planar Equivalence

Flux Tubes, Domain Walls and Orientifold Planar Equivalence

Flux tubes, domain walls and orientifold planar equivalence Agostino Patella CERN GGI, 5 May 2011 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 1 / 19 Introduction Orientifold planar equivalence Orientifold planar equivalence OrQCD 2 SU(N) gauge theory (λ = g N fixed) with Nf Dirac fermions in the antisymmetric representation is equivalent in the large-N limit and in a common sector to AdQCD 2 SU(N) gauge theory (λ = g N fixed) with Nf Majorana fermions in the adjoint representation if and only if C-symmetry is not spontaneously broken. Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 2 / 19 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w ­ OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w ­ OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x lim WOr(J) = lim WAd(J) N→∞ N→∞ Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w ­ OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x hO(x ) ··· O(xn)i hO(x ) ··· O(xn)i lim 1 c,Or = lim 1 c,Ad N→∞ N2−2n N→∞ N2−2n Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w ­ OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x hO(x ) ··· O(xn)i hO(x ) ··· O(xn)i lim 1 c,Or = lim 1 c,Ad N→∞ N2−2n N→∞ N2−2n lim h0|O|0iOr = lim h0|O|0iAd N→∞ N→∞ Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 −tH −tH lim ha|e |biOr = lim ha|e |biAd N→∞ N→∞ Symmetries inside the common sector are the same in AdjQCD and OrientiQCD. Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w ­ OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x hO(x ) ··· O(xn)i hO(x ) ··· O(xn)i lim 1 c,Or = lim 1 c,Ad N→∞ N2−2n N→∞ N2−2n lim ha|O|biOr = lim ha|O|biAd N→∞ N→∞ Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Symmetries inside the common sector are the same in AdjQCD and OrientiQCD. Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w ­ OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x hO(x ) ··· O(xn)i hO(x ) ··· O(xn)i lim 1 c,Or = lim 1 c,Ad N→∞ N2−2n N→∞ N2−2n lim ha|O|biOr = lim ha|O|biAd N→∞ N→∞ −tH −tH lim ha|e |biOr = lim ha|e |biAd N→∞ N→∞ Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Introduction Orientifold planar equivalence Gauge-invariant common sector AdQCD BOSONIC C-EVEN FERMIONIC C-EVEN BOSONIC C-ODD FERMIONIC C-ODD ~ w ­ OrQCD BOSONIC C-EVEN BOSONIC C-ODD COMMON SECTOR 2 Z Z ff e−N W(J) = DADψDψ¯ exp −S(A, ψ, ψ¯) + N2 J(x)O(x)d4x hO(x ) ··· O(xn)i hO(x ) ··· O(xn)i lim 1 c,Or = lim 1 c,Ad N→∞ N2−2n N→∞ N2−2n lim ha|O|biOr = lim ha|O|biAd N→∞ N→∞ −tH −tH lim ha|e |biOr = lim ha|e |biAd N→∞ N→∞ Symmetries inside the common sector are the same in AdjQCD and OrientiQCD. Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 3 / 19 Introduction Overview Overview Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 4 / 19 Center symmetry Overview Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 5 / 19 Center symmetry Symmetry (mis)matching Symmetry (mis)matching A center transformation around a compact dimension ˆz is a local gauge transformation, that is periodic modulo an element of the center ZN . † † Aµ(x) → Ω(x)Aµ(x)Ω (x) + iΩ(x)∂µΩ (x) ψ(x) → R[Ω(x)]ψ(x) 2πik Ω(x + Lˆz) = Ω(x)e N 2πik tr W → e N tr W Even-N OrQCD: Z2 Odd-N OrQCD: – AdQCD: ZN Only Z2 maps the common sector into itself OPE ⇒ OrQCD(N = ∞) has at least a Z2 symmetry Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 6 / 19 Z2 symmetry OrQCD(N = ∞) htr Wi = 0 1 1 htr WiOr = htr WiAdj = 0 N N htr (W2)i 6= 0 1 2 1 2 3 htr (W )iOr = htr (W )iAdj = 0 htr (W )i = 0 N N . 1 3 1 3 . htr (W )iOr = htr (W )iAdj = 0 . N N htr (WN )i 6= 0 . Is ZN a symmetry for OrQCD(N = ∞)? Center symmetry Symmetry (mis)matching Symmetry (mis)matching ZN symmetry htr Wi = 0 htr (W2)i = 0 htr (W3)i = 0 . htr (WN )i 6= 0 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 7 / 19 OrQCD(N = ∞) 1 1 htr WiOr = htr WiAdj = 0 N N 1 2 1 2 htr (W )iOr = htr (W )iAdj = 0 N N 1 3 1 3 htr (W )iOr = htr (W )iAdj = 0 N N . Is ZN a symmetry for OrQCD(N = ∞)? Center symmetry Symmetry (mis)matching Symmetry (mis)matching ZN symmetry Z2 symmetry htr Wi = 0 htr Wi = 0 htr (W2)i = 0 htr (W2)i 6= 0 htr (W3)i = 0 htr (W3)i = 0 . htr (WN )i 6= 0 htr (WN )i 6= 0 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 7 / 19 Center symmetry Symmetry (mis)matching Symmetry (mis)matching ZN symmetry Z2 symmetry OrQCD(N = ∞) htr Wi = 0 htr Wi = 0 1 1 htr WiOr = htr WiAdj = 0 N N htr (W2)i = 0 htr (W2)i 6= 0 1 2 1 2 3 3 htr (W )iOr = htr (W )iAdj = 0 htr (W )i = 0 htr (W )i = 0 N N . 1 3 1 3 . htr (W )iOr = htr (W )iAdj = 0 . N N htr (WN )i 6= 0 htr (WN )i 6= 0 . Is ZN a symmetry for OrQCD(N = ∞)? Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 7 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y T` is an operator with defined angular momentum ` h0|T0|0i 6= 0 h0|T1|0i = 0 h0|T2|0i 6= 0 ... Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 5 4 3 2 1 1.5 1 0.5 -1.5 0 -1 0 -0.5 -0.5 0 0.5 -1 1 1.5-1.5 Vacuum probability distribution in coordinate-space for ~ = 1 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 5 4 3 2 1 1.5 1 0.5 -1.5 0 -1 0 -0.5 -0.5 0 0.5 -1 1 1.5-1.5 Vacuum probability distribution in coordinate-space for ~ = 0.5 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 5 4 3 2 1 1.5 1 0.5 -1.5 0 -1 0 -0.5 -0.5 0 0.5 -1 1 1.5-1.5 Vacuum probability distribution in coordinate-space for ~ = 0.4 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 5 4 3 2 1 1.5 1 0.5 -1.5 0 -1 0 -0.5 -0.5 0 0.5 -1 1 1.5-1.5 Vacuum probability distribution in coordinate-space for ~ = 0.3 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 5 4 3 2 1 1.5 1 0.5 -1.5 0 -1 0 -0.5 -0.5 0 0.5 -1 1 1.5-1.5 Vacuum probability distribution in coordinate-space for ~ = 0.2 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 5 4 3 2 1 1.5 1 0.5 -1.5 0 -1 0 -0.5 -0.5 0 0.5 -1 1 1.5-1.5 Vacuum probability distribution in coordinate-space for ~ = 0.1 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 5 4 3 2 1 1.5 1 0.5 -1.5 0 -1 0 -0.5 -0.5 0 0.5 -1 1 1.5-1.5 Vacuum probability distribution in coordinate-space for ~ = 0.05 Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry A quantum mechanical analogy A quantum mechanical analogy p2 + p2 1 1 H = x y + mω2x2 + mω2y2 2m 2 x 2 y 2 2 lim |ψ0(x)| = δ (r) ~→0 lim h0|T`|0i = 0 for ` 6= 0 ~→0 The vacuum is invariant under rotations, but the Hamiltonian is not! Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 8 / 19 Center symmetry Two-point functions of Polyakov loops Two-point functions of Polyakov loops † lim hP(x)P (y)ic 6= 0 N→∞ AdQCD hP(x)P(y)ic = 0 † lim hP(x)P (y)ic 6= 0 N→∞ OrQCD lim hP(x)P(y)ic = 0 N→∞ hReP(0)ReP(x)ic,Or = hReP(0)ReP(x)ic,Ad † † hP(0)P(x)ic,Or + hP(0)P(x) ic,Or = hP(0)P(x) ic,Ad Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 9 / 19 Open strings Overview Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 10 / 19 † hP(x)P (y)iYM ∝ partition function of YM coupled to a static quark in x and a static antiquark in y = X −βVn(|x−y|) = mne open-string states Open strings External charges External charges » – A 1 A † A A G (x)|open − stringi ≡ DiE (x) − ψ T ψ(x) |open − stringi = ρ (x)|open − stringi g2 i R ext Agostino Patella (CERN) Tubes and walls GGI, 5/5/11 11 / 19 † hP(x)P (y)iYM ∝ partition function of YM coupled to a static quark in x and a static antiquark in y = X −βVn(|x−y|) = mne open-string states Open strings External charges External charges » – A 1 A † A A G (x)|open − stringi ≡ DiE (x) − ψ T ψ(x) |open − stringi = ρ (x)|open − stringi g2 i R ext Agostino Patella (CERN) Tubes and

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    44 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us