Rotation of Conics Practice.Tst

Rotation of Conics Practice.Tst

Precalculus Rotation of Conics Identify the equation without completing the square. 1) 4y2 - 3x + 2y = 0 1) A) hyperbola B) ellipse C) parabola D) not a conic Determine the appropriate rotation formulas to use so that the new equation contains no xy -term. 2) x2 + 2xy + y2 - 8x + 8y = 0 2) 2 2 A) x = (xʹ - yʹ) and y = (xʹ + yʹ) 2 2 1 3 3 1 B) x = xʹ - yʹ and y = xʹ + yʹ 2 2 2 2 2 + 2 2 - 2 2 - 2 2 + 2 C) x = xʹ - yʹ and y = xʹ + yʹ 2 2 2 2 D) x = -yʹ and y = xʹ Rotate the axes so that the new equation contains no xy -term. Discuss the new equation. 3) x2 + 2xy + y2 - 8x + 8y = 0 3) A) θ = 36.9° B) θ = 45° xʹ2 yʹ2 yʹ2 = -42xʹ + = 1 4 4 parabola ellipse vertex at (0, 0) center (0, 0) focus at (- 2, 0) major axis is xʹ-axis vertices at (±2, 0) C) θ = 45° D) θ = 36.9° xʹ2 = -42yʹ xʹ2 yʹ2 + = 1 parabola 4 2 vertex at (0, 0) ellipse focus at (0, - 2) center (0, 0) major axis is xʹ-axis vertices at (±2, 0) Identify the equation without applying a rotation of axes. 4) x2 + 12xy + 36y2 - 4x + 3y - 10 = 0 4) A) ellipse B) parabola C) hyperbola D) not a conic 5) 2x2 + 6xy + 9y2 - 3x + 2y + 6 = 0 5) A) hyperbola B) ellipse C) parabola D) not a conic 6) 3x2 + 12xy + 2y2 - 3x - 2y + 5 = 0 6) A) ellipse B) hyperbola C) parabola D) not a conic Precalculus 7) x2 + 3xy - 2y2 + 4x - 4y + 1 = 0 7) A) hyperbola B) parabola C) ellipse D) not a conic 8) 5x2 - 3xy + 2y2 + 3x + 4y + 2 = 0 8) A) hyperbola B) ellipse C) parabola D) not a conic Rotate the axes so that the new equation contains no xy -term. Discuss the new equation. 9) 31x2 + 10 3xy + 21y2 -144 = 0 9) A) θ = 36.9° B) θ = 30° xʹ2 yʹ2 xʹ2 yʹ2 + = 1 + = 1 9 4 4 9 ellipse ellipse center at (0, 0) center at (0, 0) major axis is xʹ-axis major axis is yʹ-axis vertices at (±3, 0) vertices at (0, ±3) C) θ = 45° D) θ = 45° xʹ2 = -42yʹ yʹ2 = -42xʹ parabola parabola vertex at (0, 0) vertex at (0, 0) focus at (0, - 2) focus at (- 2, 0) 10) xy +16 = 0 10) A) θ = 45° B) θ = 45° yʹ2 xʹ2 yʹ2 = -32xʹ - = 1 32 32 parabola hyperbola vertex at (0, 0) center at (0, 0) focus at (-8, 0) transverse axis is yʹ-axis vertices at (0, ±42) C) θ = 36.9° D) θ = 45° xʹ2 yʹ2 yʹ2 xʹ2 + = 1 + = 1 4 2 32 32 ellipse ellipse center at (0, 0) center at (0, 0) major axis is the xʹ-axis major axis is yʹ-axis vertices at (±2, 0) vertices at (0, ±42) Precalculus 11) x2 + xy + y2 - 3y - 6 = 0 11) A) θ = 45° B) θ = 45° xʹ2 yʹ2 yʹ2 = -18xʹ - = 1 6 8 parabola hyperbola vertex at (0, 0) 9 center at (0, 0) focus at (- , 0) transverse axis is the xʹ-axis 2 vertices at (± 6, 0) C) θ = 45° D) θ = 45° xʹ2 yʹ2 2 2 322 + = 1 xʹ - yʹ - 3 4 2 2 + = 1 ellipse 5 15 center at (0, 0) ellipse major axis is yʹ-axis 2 32 center at ( , ) vertices at (0, ±2) 2 2 major axis is yʹ-axis 2 32 2 92 vertices at ( , - ) and ( , ) 2 2 2 2 12) 5x2 - 6xy + 5y2 - 8 = 0 12) A) θ = 45° B) θ = 45° yʹ2 = -4xʹ xʹ2 + yʹ2 = 1 parabola 4 vertex at (0, 0) ellipse focus at (-1, 0) center at (0, 0) major axis is the xʹ-axis vertices at (±2, 0) C) θ = 45° D) θ = 45° xʹ2 = -4yʹ xʹ2 - yʹ2 = 1 parabola 4 vertex at (0, 0) hyperbola focus at (0, -1) center at (0, 0) transverse axis is the xʹ-axis vertices at (±2, 0) Determine the appropriate rotation formulas to use so that the new equation contains no xy -term. 13) 4x2 + 2xy + 4y2 - 8x + 8y = 0 13) A) x = -yʹ and y = xʹ 1 3 3 1 B) x = xʹ - yʹ and y = xʹ + yʹ 2 2 2 2 2 2 C) x = (xʹ - yʹ) and y = (xʹ + yʹ) 2 2 2 + 2 2 - 2 2 - 2 2 + 2 D) x = xʹ - yʹ and y = xʹ + yʹ 2 2 2 2 Precalculus 14) 9x2 - 4xy + 5y2 - 8x + 8y = 0 14) A) x = -yʹ and y = xʹ 2 2 B) x = (xʹ - yʹ) and y = (xʹ + yʹ) 2 2 1 3 3 1 C) x = xʹ - yʹ and y = xʹ + yʹ 2 2 2 2 2 - 2 2 + 2 2 + 2 2 - 2 D) x = xʹ - yʹ and y = xʹ + yʹ 2 2 2 2 Identify the equation without completing the square. 15) 4x2 + 3y2 + 7x - 3y = 0 15) A) parabola B) hyperbola C) ellipse D) not a conic 16) 3x2 - 4y2 - 4x + 2y + 1 = 0 16) A) hyperbola B) ellipse C) parabola D) not a conic Precalculus Answer Key Testname: ROTATION OF CONICS PRACTICE 1) C 2) A 3) C 4) B 5) B 6) B 7) A 8) B 9) B 10) A 11) D 12) B 13) C 14) D 15) C 16) A Precalculus.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us