Data Analytics Subgroup Report

Data Analytics Subgroup Report

Data Analytics Subgroup report Paolo Alcini - EMA (subgroup lead) Gianmario Candore – EMA (subgroup lead) Marek Lehmann - EMA Luis Pinheiro - EMA Antti Hyvärinen - Fimea Hans Ovelgonne – CBG-MED Mateja Sajovic - JAZMP Panagiotis Telonis - EMA Kevin Horan – HPRA (until May 2018) Massimiliano Falcinelli – EMA (from September 2018) See websites for contact details Heads of Medicines Agencies www.hma.eu European Medicines Agency www.ema.europa.eu An agency of the European Union Table of content Executive summary ..................................................................................................... 7 Data Standardisation ................................................................................................ 7 Information technology ............................................................................................ 8 Data manipulation ................................................................................................... 9 Artificial intelligence ................................................................................................. 9 Conclusions ........................................................................................................... 10 Acknowledgments .................................................................................................. 11 Data Analytics – Standardisation................................................................................. 12 1. Standardisation..................................................................................................... 12 1.1. Why .............................................................................................................. 12 1.2. Objectives ...................................................................................................... 14 1.3. Defining the main concepts .............................................................................. 14 1.4. Overview ........................................................................................................ 16 1.5. Opportunities (or use) in regulatory activities ..................................................... 17 1.5.1. Clinical trial domain ................................................................................... 18 1.5.2. Genomics domain ...................................................................................... 19 1.5.3. Bioanalytics Omics domain ......................................................................... 20 1.5.4. Social media domain .................................................................................. 20 1.5.5. Observational data/Real World evidence (RWE) domain.................................. 20 1.5.6. Spontaneous ADR ...................................................................................... 21 1.6. Challenges in regulatory activities ..................................................................... 21 1.7. Regulatory implications .................................................................................... 23 1.8. Conclusions .................................................................................................... 23 1.9. Recommendations ........................................................................................... 24 1.9.1. Subgroups recommendations supporting the needs or standardisation ............. 32 1.9.2. Useful references ....................................................................................... 36 Data Analytics - Information Technology for Big Data .................................................... 38 2. Information Technology ......................................................................................... 38 2.1. Why .............................................................................................................. 38 2.2. Objectives ...................................................................................................... 38 2.3. Main concepts ................................................................................................. 38 2.3.1. Big data ................................................................................................... 38 2.3.2. Big data sources ........................................................................................ 39 2.3.3. Big data formats........................................................................................ 40 Data Analytics Page 2/147 2.3.4. Data analytics models ................................................................................ 41 2.4. Overview ........................................................................................................ 42 2.4.1. Data storage technologies .......................................................................... 42 2.4.2. Hadoop ecosystem .................................................................................... 45 2.4.3. Cloud big data storage ............................................................................... 46 2.4.4. Data integration technologies ...................................................................... 47 2.4.5. Data warehouses and data lakes ................................................................. 47 2.4.6. Architecture .............................................................................................. 50 2.4.7. Related concepts and technologies .............................................................. 53 2.5. Opportunities .................................................................................................. 55 2.6. Challenges ..................................................................................................... 56 2.7. Recommendations ........................................................................................... 57 Data Analytics – Data manipulation ............................................................................. 59 3. Data manipulation ................................................................................................. 59 3.1. Why .............................................................................................................. 59 3.2. Objectives ...................................................................................................... 59 3.3. Main concepts ................................................................................................. 59 3.4. Glossary ......................................................................................................... 60 3.5. Overview ........................................................................................................ 61 3.5.1. Data types ................................................................................................ 61 3.5.2. Reshaping Data ......................................................................................... 63 3.5.3. Transforming Data ..................................................................................... 66 3.5.4. Dealing with missing data ........................................................................... 67 3.5.5. Dealing with incorrect data ......................................................................... 69 3.5.6. Metadata .................................................................................................. 70 3.6. Opportunities in regulatory activities .................................................................. 70 3.7. Challenges in regulatory activities ..................................................................... 71 3.8. Recommendations ........................................................................................... 72 3.9. Resources ...................................................................................................... 74 Data Analytics – The impact of artificial intelligence on analytics in the regulatory setting .. 76 4. The impact of artificial intelligence on analytics in the regulatory setting ...................... 76 4.1. Why .............................................................................................................. 76 4.2. Objectives ...................................................................................................... 77 4.3. Introduction ................................................................................................... 78 4.3.1. Defining the main concepts ......................................................................... 78 Data Analytics Page 3/147 4.3.2. Two approaches to AI ................................................................................ 79 4.3.3. Machine learning ....................................................................................... 80 4.3.4. Deep learning ........................................................................................... 81 4.3.5. Natural language processing ....................................................................... 82 4.3.6. Why AI is becoming popular ....................................................................... 82 4.3.7. Aim of the AI algorithms ............................................................................ 83 4.3.8. Which AI algorithm to use .......................................................................... 84 4.3.9. Summary of the main points ....................................................................... 84 4.4. Opportunities in regulatory activities .................................................................. 85 4.4.1. Efficiency and automation

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    147 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us