Geometric Structures on Manifolds

Geometric Structures on Manifolds

UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Sam Saiki It was defended on May 4th 2017 and approved by J. DeBlois, Ph.D., Asst. Professor, Department of Mathematics, University of Pittsburgh T. Hales, Ph.D., Professor, Department of Mathematics, University of Pittsburgh B. McReynolds, Ph.D., Assoc. Professor, Department of Mathematics, Purdue University G. Sparling, Ph.D., Assoc. Professor, Department of Mathematics, University of Pittsburgh Dissertation Director: J. DeBlois, Ph.D., Asst. Professor, Department of Mathematics, University of Pittsburgh ii GEOMETRIC STRUCTURES ON MANIFOLDS Sam Saiki, PhD University of Pittsburgh, 2017 In this thesis I will introduce three questions that involve hyperbolic and projective structures on manifolds and present my progress toward their solution. I prove that the Hilbert length spectrum (a natural generalization of the marked length spectrum) determines the projective structure on certain non compact properly convex orb- ifolds up to duality, generalizing a result of Daryl Cooper and Kelly Delp (“The marked length spectrum of a projective manifold or orbifold”) in the compact case. I develop software that computes the complex volume of a boundary unipotent repre- sentation of a 3-manifold’s fundamental group into PSL 2, C and SL 2, C . This extends p q p q the Ptolemy module software of Matthias Goerner and uses the theory of Stavros Garoufa- lidis, Dylan Thurston, and Christian Zickert found in “The complex volume of SL n, C - p q representations of 3-manifolds”. I apply my software to a census of Carlo Petronio and find non-trivial representations from non torus boundary manifolds. I also find numerical examples of Neumann’s conjecture. Ideveloptheoryandsoftwarewhichdescribesadeformationvarietyofprojectivestruc- tures on a fixed manifold. In particular, I compute the tangent space of the variety at the complete hyperbolic structure for the figure-eight knot complement. This is a philo- sophical continuation of Thurston’s deformation variety in the hyperbolic setting, which is implemented in the 3-manifold software SnapPea. iii TABLE OF CONTENTS 1.0 INTRODUCTION ................................ 2 1.1 Rigidity of Convex Projective Structures on a Manifold or Orbifold ... 3 1.2 Volumes of SL n, C and PSL 2, C representations of 3-manifolds .... 5 p q p q 1.3 Parameterize RPn Structures on 3-Manifolds ................ 8 1.4 Outline .................................... 9 2.0 BACKGROUND ................................. 10 2.1 Hyperbolic Geometry ............................. 10 2.1.1 Hyperboloid Model ......................... 11 2.1.2 Upper Half Space Model ...................... 11 2.2 Manifolds with Boundary .......................... 12 2.3 Geometric Structures on Manifolds ..................... 14 2.4 Example: Hyperbolic Structure on a 3 Holed Sphere ........... 15 2.4.1 G, X Structure on M ....................... 15 p q 2.4.2 Developing Map .......................... 17 2.4.3 Geometric Structure as Discrete Faithful Representation .... 17 2.4.4 Geometric Structure as Quotient of X by Discrete Subgroup of G 17 2.5 Interplay Between Notions of Geometric Structure ............ 18 2.5.1 G, X Structure Induces a Representation and Development Map 19 p q 2.5.2 Representations Induce Bundles with Flat Connection ..... 20 2.5.3 Bundles with Flat Connection Induce Representations ..... 21 2.5.4 Principal G-Bundles with Flat Connection are Classified by BGδ 21 2.5.5 Representations and Classifying Maps .............. 22 iv 3.0 HILBERT LENGTH SPECTRUM DETERMINES CONVEX PRO- JECTIVE STRUCTURE ............................ 23 3.1 Convex Projective Orbifolds ......................... 24 3.1.1 Examples .............................. 26 3.1.2 Automorphisms of ⌦ ........................ 26 3.1.3 Hilbert Metric and Translation Length .............. 27 3.1.4 Ends ................................. 28 3.2 Equality of Hilbert Translation Length is an Algebraic Condition .... 30 3.3 Zariski Density of Γ ............................. 32 3.3.1 Strictly Convex ........................... 32 3.3.2 Properly Convex .......................... 32 3.4 Dual Projective Structures .......................... 34 3.5 Main Theorem ................................ 35 4.0 VOLUMES OF SL 2, C AND PSL 2, C REPRESENTATIONS OF A p q p q 3-MANIFOLD ................................... 39 4.1 Hyperbolic 3-manifolds ............................ 40 4.1.1 Boundary of Hyperbolic 3-Manifolds ............... 40 4.1.2 Boundary Parabolic Representations ............... 41 4.2 Ptolemy Variety ............................... 41 4.2.1 Construction of the Ptolemy Variety ............... 42 4.2.2 G, P Cocycles ........................... 42 p q 4.2.3 Ptolemy Variety Parameterizes G, P Cocycles ......... 45 p q 4.2.4 Ptolemy Variety Parameterizes Boundary Parabolic Representa- tions ................................. 45 4.2.5 PSL 2, C Representations via Obstruction Cocycles ...... 46 p q 4.3 Volume .................................... 46 4.3.1 Cheeger-Chern-Simons Invariant in the Compact Case ..... 46 4.3.2 CCS via Characteristic Classes .................. 47 4.3.3 Extend CCS to Manifolds with Boundary ............ 48 4.3.4 Complex Volume via the Ptolemy Variety ............ 48 v 4.4 Results .................................... 50 4.4.1 Frigerio, Martelli, and Petronio Census .............. 51 4.4.2 Invariant Trace Field ........................ 52 4.4.3 Neumann’s Conjecture ....................... 52 4.4.4 Future Direction .......................... 53 4.5 Software Implementation ........................... 53 4.5.1 Complex Volumes Functions .................... 54 4.5.2 Linear Combinations ........................ 55 5.0 PARAMETERIZING REAL PROJECTIVE STRUCTURES ON A FIXED 3-MANIFOLD .............................. 57 5.1 Introduction .................................. 57 5.1.1 Strategy ............................... 58 5.1.2 Motivation for Decorating with Point Hyperplane Pairs ..... 58 5.2 Preliminaries ................................. 59 5.2.1 Notation ............................... 60 5.3 Tetrahedra of Partial Flags ......................... 60 5.3.1 Partial flags ............................. 61 5.3.2 Geometric Realization of Quadruples of Flags .......... 61 5.3.3 Action of PGL 4, R on PF .................... 62 p q 5.3.4 Placing Elements of PGL 4, R in a Standard Position ..... 63 p q 5.4 Faces of Partial Flags and Face Identifications ............... 64 5.4.1 Face Parameter and Standard Position .............. 64 5.4.2 Stabilizer of a Face ......................... 65 5.5 Projective Deformation Variety ....................... 66 5.5.1 Face Equations ........................... 67 5.5.2 Edge Equations ........................... 67 5.5.3 Gluing Equations .......................... 68 5.6 The Hyperbolic Case ............................. 69 5.6.1 Ideal Tetrahedron of Flags ..................... 69 5.6.2 Coordinates for Hyperbolic Tetrahedron ............. 69 vi 5.6.3 Coordinates for Regular Hyperbolic Tetrahedron ........ 69 5.6.4 Alternative Inner Product ..................... 70 5.7 Software Implementation ........................... 71 5.7.1 Parameters ............................. 71 5.7.2 Action of PGL 4, R ........................ 71 p q 5.7.3 Edge Holonomy ........................... 71 5.8 Figure Eight Knot Complement ....................... 72 5.8.1 Face Gluing Matrices ........................ 73 5.8.2 Face Pairing Equations ....................... 73 5.8.3 Edge Holonomy Equations ..................... 74 5.8.4 Gluing Parameter Equations .................... 76 5.8.5 Finding the Complete Hyperbolic Structure ........... 76 5.8.6 Zariski Tangent Space at the Complete Hyperbolic Structure .. 77 5.9 Future Direction ............................... 77 APPENDIX A. CODE ................................. 79 A.1 Fundamental Group Calculator ....................... 79 A.1.1 Fundamental Group of the Boundary ............... 80 APPENDIX B. DATA ................................. 81 APPENDIX C. ALTERNATIVE HYPERBOLIC MODELS AND ISOME- TRIES ........................................ 84 C.1 The Hemisphere and Klein Model ...................... 84 C.2 Di↵eomorphisms Between Models ...................... 85 BIBLIOGRAPHY .................................... 86 vii LIST OF TABLES 1Lists1,2,3,4,5,7.................................. 82 2List6........................................ 83 viii LIST OF FIGURES 1IdealTetrahedronandOrderedTruncatedTetrahedron............ 13 2 Triangulation of 3 Holed Sphere ......................... 15 3RestrictionofIdentificationtoEdges....................... 16 4DevelopingMap.................................. 17 5 Holonomy Representation ............................. 18 6 Hilbert Metric ................................... 28 7PtolemyVarietyDecoration............................ 43 8LabeledCocycle.................................. 44 9 Ptolemy Assignment to (G,P) Cocycle ...................... 45 10 Edge Holonomy .................................. 68 11 Triangulation of Figure 8 Knot Complement .................. 72 12 Variable Assignments ............................... 74 13 Triangulation Around Edge in Various Models ................. 78 ix 0.0 LIST OF ALGORITHMS 1ComplexVolumesofaListofTriangulations.................. 55 2 edgeGluings algorithm ............................... 80 1 1.0 INTRODUCTION According to Klein’s Erlangen program (1872), geometry is the study of the properties of a space invariant under the action of a group. In this vein, a geometry

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    98 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us